6.3 Proving Trigonometric Identities

Verifying versus Proving an Identity

Verifying that an identity is true can be done either numerically (substituting in a value) or graphically. This gives some evidence that the statement suggests an identity but does not offer a "proof". The most complete method for proving trigonometric identities uses algebraic and trigonometric identities that have previously been established. This method can involve simplifying, factoring, and re-writing expressions.

Example 1: a) Verify that $\frac{\sin \theta+\tan \theta}{\cos \theta+1}=\tan \theta$ is an identity
i) by substituting $\theta=\frac{\pi}{6}$
ii) by graphing for $-2 \pi \leq \theta \leq 2 \pi$
b) Use the basic identities to prove $\frac{\sin \theta+\tan \theta}{\cos \theta+1}=\tan \theta$ for all permissible values of θ. State any restrictions on $\theta \quad \cos \theta \neq-1 \quad \theta \neq \pi+n 2 \pi$
$a \cdot b+a$
CF
$a(b+1)$

$\frac{\cos \theta \neq 0 \quad \theta \neq \frac{\pi}{2}+n \pi}{\frac{\sin \theta+\tan \theta}{\cos \theta+1}}$	
$\frac{\cos \theta\left(\sin \theta+\frac{\sin \theta}{\cos \theta}\right)}{\cos \theta(\cos \theta+1)}$	
$\frac{\sin \theta \cos \theta+\sin \theta}{\cos \theta(\cos \theta+1)}$	$\frac{\sin \theta}{\cos \theta}$
$\frac{\sin \theta(\cos \theta+1)}{\cos \theta(\cos \theta+1)}$	
$\frac{\sin \theta}{\cos \theta}$	RHO = LH S \quad

Several strategies that are often successful were used in this proof.
a) Rewriting everything in terms of sine and cosine
b) Multiplying by one (using a common common denominator)
c) Only expanding when necessary
d) Try and make the more complicated side look like the less complicated side
e) Performing allowable operations with fractions

There is often more than one correct way to prove an identity. Sometimes it helps to work on both sides of the equation until they simplify to the same expression.

Example 2:

Note:

- In this example the two sides appear symmetrical: there is no "harder" side to start on!
- Expressions such as $(\sin \theta-1)$ and $(\sin \theta+1)$ are called the conjugates of each other. Multiplying them sometimes produces a Pythagorean Identity: $(\sin \theta-1)(\sin \theta+1)$

$$
\begin{aligned}
& =\sin ^{2} \theta-1 \\
& =\cos ^{2} \theta
\end{aligned}
$$

$\frac{\frac{\csc \theta-1}{\cot \theta}}{}$

$$
=(a+b)(a-b)
$$

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

$$
1+\cot ^{2} \theta=\csc ^{2} \theta
$$

$$
\begin{gathered}
\frac{\frac{\cot \theta}{\csc \theta+1}}{\cot \theta}=\frac{\csc \theta-1}{\csc \theta-1} \\
\frac{\frac{\cos \theta}{\sin \theta}\left(\frac{1}{\sin \theta}-1\right)}{\csc ^{2} \theta-1} \\
\frac{\cot \theta(\csc \theta-1)}{\cot \theta} \\
\cot \theta-1 \\
\cot \theta
\end{gathered} \text { RUS }=\text { LHS } .
$$

Further suggestions

- The use of the conjugate in some proofs is based on the principle of multiplying by 1 . Do this to one side of the identity only.
- Once an identity is established, it can be rearranged. For example $\cot ^{2} \theta=\csc ^{2} \theta-1$ is just another version of $\cot ^{2} \theta+1=\csc ^{2} \theta$, and any rearrangement can be used in future proofs.
- Do not combine more than one step in a proof on the same line. Your reasoning will not be clear and you may be penalized.
- If second degree terms are involved (ex. $\sin ^{2} x$), consider using the Pythagorean Identities or factoring. Do not take the square root of one side.
- Reciprocal and Quotient Identities can be generalized; for example:

$$
\csc ^{2} x=\frac{1}{\sin ^{2} x} \quad 5 \csc 2 x=\frac{5}{\sin 2 x} \quad 3 \cot 2 x=\frac{3 \cos 2 x}{\sin 2 x} \quad \text { or } \quad 3 \cot 2 x=\frac{3}{\tan 2 x}
$$

- Avoid common mistakes, such as

$$
\begin{aligned}
& \frac{\cos 2 x}{2} \neq \cos x, \\
& \sin ^{2} x+\cos ^{2} x=1, \quad \sin x+\cos x \neq 1, \\
& \sin 2 x \neq 2 \sin x \neq \sin ^{2} x .
\end{aligned}
$$

Example 3: Prove the identities and state any restrictions:
a) $\frac{\csc x-\sin x}{\cot x}=\cos x$
b) $\frac{\sec x}{\tan x+\cot x}=\sin x$

$\cos x$
c) $\frac{\sin 2 A}{2-2 \cos ^{2} A}=\cot A$
d) $\quad \frac{1-\cos x}{\sin x}=\frac{1}{\csc x+\cot x}$
e) $\frac{\sec x}{1-\cos x}=\frac{\sec x+1}{\sin ^{2} x}$
f) $\frac{\cos 2 x}{\cos x-\sin x}=\frac{\sin 2 x}{2 \cos x}+\cos x$

