6.1 Reciprocal, Quotient and Pythagorean Identities
$3 x^{2}+8=20$ is an example of an equation. It is true for only certain values of the variable x. In this case the solutions are $x= \pm 2$.

Can the expression $3 x^{2}+8$ always be replaced with 20 ? no, only if $x= \pm 2 \quad 2 x+1=9$
Can 20 always be replaced with $3 x^{2}+8$? no, only when $x= \pm 2$
$(x-3)^{2}=x^{2}-6 x+9$ is an example of an identity. It is true for all permissible values of the variable x.
Can $(x-3)^{2}$ always be replaced with $x^{2}-6 x+9 ? ~ Y e s$

$$
x+x=2 x
$$

Can $x^{2}-6 x+9$ always be replaced with $(x-3)^{2}$? yes
Some other examples are:

Equation	Identity
$\sin x=0.5$	$\sin ^{2} x+\cos ^{2} x=1$
$5 \tan x+3=8$	$\tan x=\frac{\sin x}{\cos x}$
$\csc x=2$	$\csc x=\frac{1}{\sin x}$

We currently have the following identities

Reciprocal Identities	$\sec \theta=\frac{1}{\cos \theta}$	$\csc \theta=\frac{1}{\sin \theta}$	$\cot \theta=\frac{1}{\tan \theta}$
Quotient Identities	$\tan \theta=\frac{\sin \theta}{\cos \theta}$	$\cot \theta=\frac{\cos \theta}{\sin \theta}$	

pick arandom number and see if both sides are equal.
Potential identities can be verified numerically or graphically.
Example 1.
\rightarrow graph both sides and seeif
a) Determine the non-permissible values in the equation: $\csc \theta=\frac{\cot \theta}{\cos \theta}$.

$$
\csc \theta=\frac{\left(\frac{\cos \theta}{\sin \theta}\right)}{\cos \theta}
$$ the graphs are identical.

b) Numerically verify that $\theta=45^{\circ}$ and $\theta=\frac{\pi}{6}$ are solutions to this equation.

c) Use your calculator and graph over the domain $-2 \pi \leq \theta \leq 2 \pi$ to decide whether this is an identity.

$$
\begin{aligned}
& y_{1}=\frac{1}{\sin x} \\
& y_{2}=\frac{\left(\frac{1}{\tan (x)}\right)}{\cos (x)}
\end{aligned}
$$

the 2 graphs do
overlap. for

$$
-2 \pi \leq x \leq 2 \pi
$$

verifying numerically and graphically are pretty good indicators of identities, but the only definitive proof is algebraic

Example 2.
a) Determine the non-permissible values, in radians, of the variable in each expression.
b) Simplify the expression.

Example 3.

a) Verify that the equation $\tan ^{2} \theta+1=\sec ^{2} \theta$ is true when $\theta=\frac{\pi}{3}$

$$
\begin{aligned}
\left(\frac{\sqrt{3}}{1}\right)^{2}+1 & =\left(\frac{2}{1}\right)^{2} \\
3+1 & =4 \quad \text { s true for } \theta=\frac{\pi}{3}
\end{aligned}
$$

b) Multiply the both sides of the Pythagorean Identity $\cos ^{2} \theta+\sin ^{2} \theta=1$ by $\frac{1}{\cos ^{2} \theta}$. Why does this create a new identity?

$$
\begin{aligned}
\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta} & =\frac{1}{\cos ^{2} \theta} \\
\tan ^{2} \theta+1 & =\sec ^{2} \theta
\end{aligned}
$$

c) Multiply the both sides of the Pythagorean Identity $\cos ^{2} \theta+\sin ^{2} \theta=1$ by $\frac{1}{\sin ^{2} \theta}$. What new identity does this create?

$$
\begin{aligned}
\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin ^{2} \theta} & =\frac{1}{\sin ^{2} \theta} \\
1+\cot ^{2} \theta & =\csc ^{2} \theta
\end{aligned}
$$

Note that the Pythagorean identities can each be rearranged to produce other identities:

$\sin ^{2} x+\cos ^{2} x=1$	$\tan ^{2} x+1=\sec ^{2} x$	$\cot ^{2} x+1=\csc ^{2} x$
$\sin ^{2} x=1-\cos ^{2} x$	$\tan ^{2} x=\sec ^{2} x-1$	$\cot ^{2} x=\csc ^{2} x-1$
$\cos ^{2} x=1-\sin ^{2} x$ $\cos ^{2} x=(1+\sin x)(1-\sin x)$	$1=\sec ^{2} x-\tan ^{2} x$ $1=(\sec x+\tan x)(\sec x-\tan x)$	$1=\csc ^{2} x-\cot ^{2} x$

It is also important to note that the right hand side in each of the statements in the bottom two rows is a difference of squares, and can therefore be factored.

Thus, $\sin ^{2} x=1-\cos ^{2} x=(1-\cos x)(1+\cos x)$
Also, these identities are true regardless of whether you are in degrees or radians.
ie. $\sin ^{2} .47+\cos ^{2} .47=1$

$$
\sin ^{2} 59^{\circ}+\cos ^{2} 59^{\circ}=1
$$

$$
\sin ^{2} \frac{2 \pi}{7}+\cos ^{2} \frac{2 \pi}{7}=1
$$

