6.1 Reciprocal, Quotient and Pythagorean Identities

 $3x^2 + 8 = 20$ is an example of an equation. It is true for only certain values of the variable x. In this case the solutions are $x = \pm 2$.

Can the expression $3x^2 + 8$ always be replaced with 20? no, only if $x = \pm 2$ Can 20 always be replaced with $3x^2 + 8$? No, only when $x = \pm 2$

 $(x-3)^2 = x^2 - 6x + 9$ is an example of an identity. It is true for all permissible values of the variable x. Can $(x-3)^2$ always be replaced with $x^2 - 6x + 9$? YeS $\chi + \chi = 2 \chi$ Can $x^2 - 6x + 9$ always be replaced with $(x-3)^2$? YeS

Some other examples are:

We currently have the following identities

Reciprocal Identities	se	$\mathbf{c}\boldsymbol{\theta} = \frac{1}{\cos\theta}$	$\csc\theta = \frac{1}{\sin\theta}$	$\overline{ heta}$	$\cot\theta = \frac{1}{\tan\theta}$
Quotient Identities		$\tan\theta = \frac{\sin\theta}{\cos\theta}$		$\cot\theta = \frac{\cos\theta}{\sin\theta}$	

Potential identities can be verified numerically or graphically.

Example 1.

ential identities can be verified numerically or graphically. ample 1. a) Determine the non-permissible values in the equation: $\csc \theta = \frac{\cot \theta}{\cos \theta}$ $(\cos \theta)$ $(\cos \theta)$

b) Numerically verify that $\theta = 45^{\circ}$ and $\theta = \frac{\pi}{6}$ are solutions to this equation.

$\theta = 45^{\circ}$		$\theta = \frac{\pi}{6}$	
$\csc \theta$ \Rightarrow	$\frac{\cot\theta}{\cos\theta}$	$\csc heta$	$\frac{\cot\theta}{\cos\theta}$
CSC (45°)	COT (45°) COS (45°)	$CSC\left(\frac{\pi}{6}\right)$	$\frac{\cot\left(\frac{\pi}{6}\right)}{\cos\left(\frac{\pi}{6}\right)}$
$\frac{1}{\left(\frac{1}{12}\right)} =$	$\frac{1}{\left(\frac{1}{52}\right)}$	<u>2</u> 1	$\frac{\sqrt{3}}{\frac{13}{13}}$

c) Use your calculator and graph over the domain $-2\pi \le \theta \le 2\pi$ to decide whether this is an identity.

$$Y_{1} = \frac{1}{\sin x}$$

$$Y_{2} = \left(\frac{1}{\tan(x)}\right)$$

$$\frac{1}{\cos(x)}$$

$$Y_{2} = \left(\frac{1}{\tan(x)}\right)$$

$$\frac{1}{\cos(x)}$$

Example 2.

- a) Determine the non-permissible values, in radians, of the variable in each expression.
- b) Simplify the expression.

Example 3.

a) Verify that the equation $\tan^2 \theta + 1 = \sec^2 \theta$ is true when $\theta = \frac{\pi}{2}$

(
$$\begin{bmatrix} 3 \\ 1 \end{bmatrix}^2 + 1 = (\frac{2}{1})^2$$

 $3 + 1 = 4$ \checkmark true for $\vartheta = \frac{\pi}{3}$
b) Multiply the both sides of the Pythagorean Identity $\cos^2 \vartheta + \sin^2 \vartheta = 1$ by $\frac{1}{\cos^2 \vartheta}$. Why does this create a new identity?
 $\underbrace{\sin^2 \vartheta + (\cos^2 \vartheta)}_{\cos^2 \vartheta} = \frac{1}{\cos^2 \vartheta}$
 $\frac{1}{\cos^2 \vartheta} + 1 = \sec^2 \vartheta$
c) Multiply the both sides of the Pythagorean Identity $\cos^2 \vartheta + \sin^2 \vartheta = 1$ by $\frac{1}{\cos^2 \vartheta}$ What new

c) Multiply the both sides of the Pythagorean Identity $\cos^2 \theta + \sin^2 \theta = 1$ by $\frac{1}{\sin^2 \theta}$. What new identity does this create? $\frac{\sin^2 \theta}{\sin^2 \theta} = \frac{1}{\sin^2 \theta}$

$$+ \cot^2 \Theta = \csc^2 \Theta$$

Note that the Pythagorean identities can each be rearranged to produce other identities:

$\sin^2 x + \cos^2 x = 1$	$\tan^2 x + 1 = \sec^2 x$	$\cot^2 x + 1 = \csc^2 x$
$\sin^2 x = 1 - \cos^2 x$	$\tan^2 x = \sec^2 x - 1$	$\cot^2 x = \csc^2 x - 1$
$\cos^2 x = 1 - \sin^2 x$ $\cos^2 x = (1 + \sin x)(1 - \sin x)$	$1 = \sec^2 x - \tan^2 x$ $I = (\sec x + \tan x)(\sec x - \tan x)$	$1 = \csc^2 x - \cot^2 x$

It is also important to note that the right hand side in each of the statements in the bottom two rows is a **difference of squares**, and can therefore be factored.

Thus,
$$\sin^2 x = 1 - \cos^2 x = (1 - \cos x)(1 + \cos x)$$

Also, these identities are true regardless of whether you are in degrees or radians. ie. $\sin^2 .47 + \cos^2 .47 = 1$ $\sin^2 59^0 + \cos^2 59^0 = 1$ $\sin^2 \frac{2\pi}{7} + \cos^2 \frac{2\pi}{7} = 1$