Chapter 9 Review

1. A change in velocity occurs when the ___speed__ of an object changes, or its __direction___ of motion
changes, or both. These changes in velocity can either be ___positive__or or_negative__.
2. To calculate a change in velocity, subtract the ___initial__ velocity from the __final__ velocity.
3. Calculate the change in velocities of the following objects:
a) A boy is skiing forward down the mountain at $8 \mathrm{~m} / \mathrm{s}$. He reaches a steeper part of the mountain and increases his velocity to $15 \mathrm{~m} / \mathrm{s}$.

- $\Delta \vec{v}=\vec{v}_{f}-\vec{v}_{i}=(+15 \mathrm{~m} / \mathrm{s})-(+8 \mathrm{~m} / \mathrm{s})=+7 \mathrm{~m} / \mathrm{s}$
b) A car is moving forward at $50 \mathrm{~km} / \mathrm{h}$. A young child runs across the street and the car slows to $30 \mathrm{~km} / \mathrm{h}$.
- $\Delta \vec{v}=\vec{v}_{f}-\vec{v}_{i}=(+30 \mathrm{~km} / \mathrm{h})-(+50 \mathrm{~km} / \mathrm{h})=-20 \mathrm{~km} / \mathrm{h}$
c) A young girl hits a tennis ball forward at a wall at $20 \mathrm{~m} / \mathrm{s}$. The ball rebounds off the wall at $15 \mathrm{~m} / \mathrm{s}$ back towards the girl.
- $\Delta \vec{v}=\vec{v}_{f}-\vec{v}_{i}=(-15 m / s)-(+20 \mathrm{~m} / \mathrm{s})=-35 \mathrm{~m} / \mathrm{s}$
d) A train is travelling forward at $30 \mathrm{~m} / \mathrm{s}$. After some time passes, the train has not changed velocity and is still moving forward at $30 \mathrm{~m} / \mathrm{s}$.
- $\Delta \vec{v}=\vec{v}_{f}-\vec{v}_{i}=(+30 \mathrm{~m} / \mathrm{s})-(+30 \mathrm{~m} / \mathrm{s})=0 \mathrm{~m} / \mathrm{s}$

4. A ___positive__ change in velocity results when an object that is already moving in a forward direction increases \qquad its velocity in the same (forward) direction.
5. A __negative___ change in velocity results when an object that is already moving in a forward direction __decreases__ its velocity in the same (forward) direction.
6. If your initial and final velocities are ___equal__, then your change in velocity would be __zero \qquad and you would be moving at a ___constant___ velocity.
7. If velocity is constant your motion is said to be __uniform__, and if your velocity is changing (either positive or negative), your motion is said to be \qquad non-uniform_.
8. \qquad Acceleration \qquad is the rate at which an object changes its velocity.
9. Like velocity, acceleration is also a ___vector___ quantity, meaning you must specify both magnitude and __d direction \qquad when recording an object's acceleration.
10. When comparing the acceleration of __two different objects \qquad , the object that changes its velocity in a shorter time interval or has a greater change in __velocity___ during the time interval, is said to have a _greater \qquad acceleration.
11. There are two types of acceleration, ___ positive \qquad and \qquad negative \qquad .
12. If a car is moving forward and increases it's velocity in the forward direction, the acceleration is said to be __positive__. If a car is moving forward and ___decreases___ it's velocity in the forward direction the acceleration is said to be ___ negative___.
13. Acceleration which causes the object to decrease its speed is sometimes called \qquad deceleration \qquad .
14. Positive and negative acceleration both depend upon the ___direction___ that the object is initially moving. Generally, we define an object moving forward as \qquad positive \qquad and an object moving backward as
\qquad negative .
15. If the change of velocity of an object is positive it's said to be accelerating \qquad forward or positively, if the change of velocity of an object is negative it's said to be accelerating \qquad backward or negatively.
16. A train is travelling forward at $20 \mathrm{~m} / \mathrm{s}$, stops and backs up at $5 \mathrm{~m} / \mathrm{s}$. What is the train's change in velocity and what is the direction of the train's acceleration?

- $\Delta \vec{v}=\vec{v}_{f}-\vec{v}_{i}=(-5 m / s)-(+20 \mathrm{~m} / \mathrm{s})=-25 \mathrm{~m} / \mathrm{s}$
- The direction of the train's acceleration is backwards

17. If the acceleration of an object is in the same direction as the velocity, what happens to the velocity of the object?

- If an object accelerates in the same direction that the object is already moving, then the object's velocity will increase.

18. If the acceleration of an object is in the opposite direction as the velocity, what happens to the velocity of the object?

- If an object accelerates in the opposite direction to the velocity, then the object's velocity will decrease.

19. Describe the concept behind having airbags in automobiles (be sure your description includes the acceleration that occurs in a car accident.)

- The driver of a car is moving at the same velocity as the car when driving. When you get into a car accident, the car and the driver both decelerate to zero very quickly.
- The idea behind airbags is to prolong the stopping time that occurs when you get into a car accident. When you hit the air bag your change in velocity takes a longer period of time as compared to simply striking the dashboard or the car. This results in a smaller acceleration.
- If your acceleration is smaller, there is less chance of injury.

20. Position-time graphs can be used to ___represent the motion \qquad of an object travelling at constant velocity or ___changing__ from constant velocity to another. Velocity-time graphs can be used instead to represent motion of an object whose velocity is \qquad changing \qquad . Velocity-time graphs provide information about an object's \qquad velocity and \qquad acceleration \qquad .
21. The slope of a line on a velocity-time graph represents the \qquad change \qquad in the object's velocity. ___Change in velocity \qquad is also known as acceleration, therefore the slope of a velocity-time graph also represents an object's \qquad acceleration \qquad _.
22. Describe how you would calculate an object's acceleration using the slope of a velocity-time graph.

- Slope can be calculated by calculating the change in velocity over a time interval and dividing it by that time interval.
- Since the slope of a velocity-time graph equals the acceleration, $\vec{a}=\frac{\Delta \vec{v}}{\Delta t}=\frac{r i s e}{r u n}$

23. The SI unit for acceleration is __m/s $\mathbf{s}^{\mathbf{2}}$.
24. Describe what is occurring to an object that is accelerating forward at $5.0 \mathrm{~m} / \mathrm{s}^{2}$.

- When an object is accelerating at $5.0 \mathrm{~m} / \mathrm{s}^{2}$ it is increasing its velocity $5.0 \mathrm{~m} / \mathrm{s}$ every 1.0 s that passes by.
- After 2 seconds the object has increased its velocity twice by $5 \mathrm{~m} / \mathrm{s}$, giving the object a velocity of $10 \mathrm{~m} / \mathrm{s}$ if it started at rest.

25. If an object's velocity is changing at a constant rate, it has a \qquad constant__ acceleration.
26. \qquad acceleration is represented by the slope of a velocity-time graph.

Use the velocity-time graph below to answer question 27.

27. For each of the time intervals below, describe the velocity and acceleration of the object.
a) $0 \mathrm{~s}-2 \mathrm{~s}$

- The object starts at rest and increases its velocity at a constant rate until it reaches $\mathbf{8 m} / \mathbf{s}$ [E].
- The object's acceleration is forward (east) and positive $\left(+4 \mathrm{~m} / \mathbf{s}^{2}\right)$.
b) $2 \mathrm{~s}-6 \mathrm{~s}$
- The object's velocity stays constant at $\mathbf{8 m} / \mathrm{s}$ [E] for this time interval.
- The object's acceleration is zero.
c) $6 \mathrm{~s}-10 \mathrm{~s}$
- The object starts at $8 \mathrm{~m} / \mathrm{s}$ [E] and decreases its velocity at a constant rate until it reaches $0 \mathrm{~m} / \mathrm{s}$.
- The object's acceleration is backward (west) and negative ($-2 \mathrm{~m} / \mathrm{s}^{2}$).

28. Calculate the acceleration of the following objects:
a) A woman riding a bicycle is travelling forward at $5 \mathrm{~m} / \mathrm{s}$ and increases her velocity to $20 \mathrm{~m} / \mathrm{s}$ in 5 s .

- $\Delta \vec{v}=\vec{v}_{f}-\vec{v}_{i}=(+20 \mathrm{~m} / \mathrm{s})-(+5 \mathrm{~m} / \mathrm{s})=+15 \mathrm{~m} / \mathrm{s}$
- $\vec{a}=\frac{\Delta \vec{v}}{\Delta t}=\frac{+15 \mathrm{~m} / \mathrm{s}}{5 \mathrm{~s}}=3 \mathrm{~m} / \mathrm{s}^{2}$
b) You throw a tennis ball at a wall and it hits the wall going $25 \mathrm{~m} / \mathrm{s}$. The ball rebounds off the wall at $15 \mathrm{~m} / \mathrm{s}$ back towards you in 0.5 s .
- $\Delta \vec{v}=\vec{v}_{f}-\vec{v}_{i}=(-15 \mathrm{~m} / \mathrm{s})-(+25 \mathrm{~m} / \mathrm{s})=-40 \mathrm{~m} / \mathrm{s}$
- $\vec{a}=\frac{\Delta \vec{v}}{\Delta t}=\frac{-40 \mathrm{~m} / \mathrm{s}}{0.5 \mathrm{~s}}=-80 \mathrm{~m} / \mathrm{s}^{2}$
c) You are driving a car at $20 \mathrm{~m} / \mathrm{s}$. Suddenly a dog runs out in front of your car and you slow to a stop in 2s.
- $\Delta \vec{v}=\vec{v}_{f}-\vec{v}_{i}=(0 \mathrm{~m} / \mathrm{s})-(+20 \mathrm{~m} / \mathrm{s})=-20 \mathrm{~m} / \mathrm{s}$
- $\vec{a}=\frac{\Delta \vec{v}}{\Delta t}=\frac{-20 \mathrm{~m} / \mathrm{s}}{2 s}=-10 \mathrm{~m} / \mathrm{s}^{2}$

29. You can also use an acceleration to calculate either a \qquad change in velocity \qquad or \qquad
\qquad . If you know acceleration and change in time, you \qquad multiply acceleration by time to calculate the change in velocity. If you know acceleration and change in velocity, you \qquad divide \qquad change in velocity by acceleration to calculate the change in time.
30. Calculate the change in velocity of the following objects:
a) A runner at rest accelerates forward at $2.0 \mathrm{~m} / \mathrm{s}^{2}$ for 6 s .

- $\Delta \vec{v}=(\vec{a}) \times(\Delta t)=\left(+2 \mathrm{~m} / \mathrm{s}^{2}\right) \times(6 s)=+12 \mathrm{~m} / \mathrm{s}$
b) A car screeches to a halt with a negative acceleration of $-15 \mathrm{~m} / \mathrm{s}^{2}$ in 1.5 s .
- $\Delta \vec{v}=(\vec{a}) \times(\Delta t)=\left(-15 \mathrm{~m} / \mathrm{s}^{2}\right) \times(1.5 \mathrm{~s})=-22.5 \mathrm{~m} / \mathrm{s}$
c) A baseball that is hit by a bat. The ball experiences an acceleration of $200 \mathrm{~m} / \mathrm{s}^{2}$ for 0.25 s .
- $\Delta \vec{v}=(\vec{a}) \times(\Delta t)=\left(+200 \mathrm{~m} / \mathrm{s}^{2}\right) \times(0.25 \mathrm{~s})=+50 \mathrm{~m} / \mathrm{s}$

31. Calculate the time interval of the following scenarios:
a) A car moving $20 \mathrm{~m} / \mathrm{s}$ forward slows to a stop. If the car decelerates at $5 \mathrm{~m} / \mathrm{s}^{2}$, how long does it take for the car to come to a stop?

- $\Delta \vec{v}=\vec{v}_{f}-\vec{v}_{i}=(0 \mathrm{~m} / \mathrm{s})-(+20 \mathrm{~m} / \mathrm{s})=-20 \mathrm{~m} / \mathrm{s}$
- $\Delta t=\frac{\Delta \vec{v}}{\vec{a}}=\frac{-20 \mathrm{~m} / \mathrm{s}}{-5 \mathrm{~m} / \mathrm{s}^{2}}=4 \mathrm{~s}$
b) A train going $20 \mathrm{~m} / \mathrm{s}$ increases its velocity to $40 \mathrm{~m} / \mathrm{s}$ in the same direction. If the train accelerates at $4 \mathrm{~m} / \mathrm{s}^{2}$, how long does the train accelerate for?
- $\Delta \vec{v}=\vec{v}_{f}-\vec{v}_{i}=(+40 \mathrm{~m} / \mathrm{s})-(+20 \mathrm{~m} / \mathrm{s})=+20 \mathrm{~m} / \mathrm{s}$
- $\Delta t=\frac{\Delta \vec{v}}{\vec{a}}=\frac{+20 \mathrm{~m} / \mathrm{s}}{+4 m / s^{2}}=5 \mathrm{~s}$
c) A girl on rollerblades is travelling $9 \mathrm{~m} / \mathrm{s}$ in the forward direction; she slows down to $2 \mathrm{~m} / \mathrm{s}$ in the same direction, how long does she decelerate for if she decelerates at $1 \mathrm{~m} / \mathrm{s}^{2}$?
- $\Delta \vec{v}=\vec{v}_{f}-\vec{v}_{i}=(+2 m / s)-(+9 m / s)=-7 m / s$
- $\Delta t=\frac{\Delta \vec{v}}{\vec{a}}=\frac{-7 m / s}{-1 m / s^{2}}=7 s$

32. __Gravity__ is an attractive force that acts between two or more objects. The most common example of which is between any object near the Earth and the Earth itself.
33. Gravity is a constant ___negative__ acceleration that objects experience when they fall freely near the Earth's surface.
34. Describe the velocity and acceleration that a ball experiences from the time it is tossed in the air until it hits the floor.

- When a ball is thrown in the air it has an initial positive velocity (positive being up in direction.)
- Gravity starts acting on the ball the moment it leaves your hand. The acceleration is negative and constant and acts on the ball the entire process.
- The ball slows in velocity and when it reaches its maximum height, it has a velocity of zero, after which the ball starts increasing its velocity negatively (negative being down in direction) until it hits the floor.

35. Objects that are dropped that have different masses accelerate at the \qquad same \qquad rate.
36. Today we understand that two objects dropped from the same height should hit the ground at the same time regardless of the their masses. Describe why a flat piece of paper might take longer to hit the floor if it was dropped at the same height and at the same time as a tennis ball.

- The reason that a flat piece of paper may take longer to hit the floor than the tennis ball may be attributed to air resistance.
- Air resistance is a friction-like force that opposed motion of objects that move through the air. Since the piece of paper has more surface area for air resistance to act on, it may take longer to hit the ground than the tennis ball.

37. Galileo \qquad first proposed that in the absence of air resistance, all objects regardless of their weight, fall at the \qquad same constant acceleration \qquad . This type of acceleration is called acceleration due to gravity \qquad . The value of which is \qquad $9.8 \mathrm{~m} / \mathrm{s}^{2}$ \qquad downward.
38. Calculate the change in velocity of the following objects:
a) A man jumps off a diving board and hits the pool water below 2 s later.

- $\Delta \vec{v}=(g) \times(\Delta t)=\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \times(2 s)=-19.6 \mathrm{~m} / \mathrm{s}$
b) A rock is dropped off a cliff and hits the ground 5 s later.
- $\Delta \vec{v}=(g) \times(\Delta t)=\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \times(5 s)=-49 \mathrm{~m} / \mathrm{s}$

39. Calculate the time interval for the following scenarios:
a) A man jumps off a diving board and hits the pool water below with a velocity of $25 \mathrm{~m} / \mathrm{s}$.

- $\Delta \vec{v}=\vec{v}_{f}-\vec{v}_{i}=(-25 m / s)-(0 m / s)=-25 m / s$
- $\Delta t=\frac{\Delta \vec{v}}{\vec{a}}=\frac{-25 \mathrm{~m} / \mathrm{s}}{-9.8 m / \mathrm{s}^{2}}=2.6 \mathrm{~s}$
b) A girl is on a trampoline. She jumps up with a velocity of $12 \mathrm{~m} / \mathrm{s}$ and lands on her way down with a velocity of $-12 \mathrm{~m} / \mathrm{s}$.
- $\Delta \vec{v}=\vec{v}_{f}-\vec{v}_{i}=(-12 m / s)-(+12 m / s)=-24 m / s$
- $\Delta t=\frac{\Delta \vec{v}}{\vec{a}}=\frac{-24 \mathrm{~m} / \mathrm{s}}{-9.8 \mathrm{~m} / \mathrm{s}^{2}}=2.4 \mathrm{~s}$

Vocabulary to Know:

Write a concise definition of each of these terms found in this chapter.

Acceleration due to gravity:
Acceleration:
Air resistance:
Average acceleration:
Change in velocity:
Constant velocity:
Constant acceleration:

Deceleration:
Gravity:
Negative change in velocity:
Negative acceleration:
Positive acceleration:
Positive change in velocity:
Velocity-time graph:

Symbols to Know:

Indicate what each of the following symbols represent and whether they are a scalar quantity or a vector quantity.

- $\vec{a} \quad$ acceleration (vector)
- $\Delta t \quad$ time interval (scalar)
- $\vec{v}_{i} \quad$ initial velocity (vector)
- $\vec{v}_{f} \quad$ final velocity (vector)
- $\Delta \vec{v} \quad$ change in velocity (vector)

