What is Gravity

Gravity is a force that acts on objects. It is a force that pushes down. The force of gravity is constant which means that acceleration due to gravity is also _constant.

Acceleration due to Gravity (g)

- $g=9.8 \mathrm{~m} / \mathrm{s}^{2}\left[\right.$ down or $\mathrm{g}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
* note the sign and the direction
- While gravity is constant, there are ways to reduce the effective acceleration due to gravity:
- Lift is a force that pushes the object \qquad up
- Examples: - hot air balloons, hot air rises
- Drag is a force that \qquad pushes \qquad acting opposite to motion .
- Examples: - like air resistance/friction - parachutes create air resistance reducing acceleration from gravity

Calculations Involving g

We can use the same triangle that we do for acceleration, velocity and time intervals, keeping in mind that here, $\overrightarrow{-}_{\mathbf{a}}$ is replaced with \qquad _-

- Remember that the positive direction is \qquad
- Acceleration due to gravity is always _down and is therefore a negative value.

Practice Problems:

1. What is the change in velocity of a hailstone that falls for 3.0 s ?

$$
\begin{aligned}
\overrightarrow{\Delta V} & =g \cdot \Delta t \\
& =\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \times(3.0 \mathrm{~s}) \\
& =-29.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2. A ball is thrown up into the air. How much time does it take to go from $16 \mathrm{~m} / \mathrm{s}$ [up] to $2.0 \mathrm{~m} / \mathrm{s}$ [up]?

$$
\begin{aligned}
\stackrel{\rightharpoonup}{\Delta V} & =\stackrel{\rightharpoonup}{V_{f}}-\stackrel{\rightharpoonup}{V}_{i} \\
& =+2 \mathrm{~m} / \mathrm{s}-(16 \mathrm{~m} / \mathrm{s}) \\
& =-14 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
\Delta t & =\frac{\overrightarrow{\Delta V}}{9} \\
& =\frac{-14 \mathrm{~m} / \mathrm{s}}{-9.8 \mathrm{~m} / \mathrm{s}^{2}}
\end{aligned}
$$

$$
\Delta t=1.43 \mathrm{~s}
$$

3. A rock is thrown up into the air with an initial velocity of $14 \mathrm{~m} / \mathrm{s}$ [up]. What will be the velocity after 0.61 seconds?

$$
\begin{aligned}
\overrightarrow{\Delta V} & =g \cdot \Delta t & V_{i}=14 \mathrm{~m} / \mathrm{s} \\
& =\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \times(0.61 \mathrm{~s}) & \overrightarrow{\Delta V}=V_{f}-V_{i} \\
\overrightarrow{\Delta V} & =-6 \mathrm{~m} / \mathrm{s} & V_{f}=+8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

4. A brick falls from the top of a chimney. What is the velocity of the

$$
\begin{array}{ll}
\stackrel{\text { brick after } 1.5 \mathrm{~s} ?}{ } \mathrm{~V}=0 & \overrightarrow{A V}
\end{array}=9 \cdot \Delta t \mathrm{~g}
$$

5. A ball is thrown straight up into the air at $12 \mathrm{~m} / \mathrm{s}$. How long does it take for the ball to reach its maximum height?

$$
\begin{array}{rlrl}
\vec{V}_{i} & =+12 \mathrm{~m} / \mathrm{s} & \Delta t & =\frac{\overrightarrow{\Delta V}}{g} \\
\overrightarrow{V_{f}}=0 \mathrm{~m} / \mathrm{s} & & =\frac{-12 \mathrm{~m} / \mathrm{s}}{-9.8 \mathrm{~m} / \mathrm{s}^{2}}
\end{array}
$$

$$
\begin{aligned}
& V_{f}=-14.7 \mathrm{~m} / \mathrm{s} \\
& \text { or } \\
& 14.7 \mathrm{~m} / \mathrm{s}[\text { down }]
\end{aligned}
$$

* max height when it slows to $0 \mathrm{~m} / \mathrm{s}$.

6. A rock is thrown downward from a roof at $11 \mathrm{~m} / \mathrm{s}$. What is the velocity of the rock after 0.75 s ?

$$
\begin{aligned}
V_{i}=-11 \mathrm{~m} / \mathrm{s} \quad \overrightarrow{A V} & =9 \cdot \Delta t \\
& =\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.75 \mathrm{~s}) \\
& =-7.35 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

