(1) reference angle
(2) quadrants on unit circle.
5.4A Warmup

Solve the following equations algebraically. Where possible give exact values

1) $\sin x=-0.3 \quad 0 \leq x<2 \pi$

$\sin x=-0.3$
$\sin x_{r}=0.3$
$x_{r}=\sin ^{-1}(0.3)$
$x_{R}=.305$
QB:

$$
\begin{aligned}
& x=\pi+.305 \\
& x=3.44
\end{aligned}
$$

$$
\text { QU: } x=2 \pi-.305
$$

$$
x=5.98
$$

$$
x=3.44,5.98
$$

2) $\tan ^{2} x-3=0 \quad 0 \leq x<360^{\circ}$

$$
\begin{aligned}
\tan ^{2} x-3 & =0 \\
\tan ^{2} x & =3 \\
\tan x & = \pm \sqrt{3}
\end{aligned}
$$

3) $2 \sin ^{2} x+5 \sin x=-3$

$$
\begin{aligned}
& 2 \sin ^{2} x+5 \sin x+3=0 \\
& (2 \sin x+3)(\sin x+1)=0 \\
& \sin x=-\frac{3}{2} \quad \sin x=-1
\end{aligned}
$$

no solution

$$
\begin{aligned}
& x=270^{\circ}+n 360^{\circ} \\
& \text { or } \\
& x=\frac{3 \pi}{2}+n 2 \pi
\end{aligned}
$$

5.4A Solving Trigonometric Equations Graphically

Solve the following equations graphically

1) $L^{\sin x}=-0.3,0 \leq x<2 \pi$

Method 1: Intersection Method

Graph the functions represented by the two sides of the equation and find the intersections) in the specified interval. Note that you only want the x coordinate of the intersection point.

$$
x=3.446,5.978
$$

Solution:

Method 2: Zero Method

Rearrange the equation so that one side is equal to zero. Graph the one function and determine its zeros (or x intercepts)
$\mathrm{Y} 1=\sin x+0.3$
2

Window settings

Window settings
Solution:

If you were asked to solve over the reals, how could you use the graph to help?
could find period using the graph.
2) $\tan ^{2} x-3=0 \quad 0 \leq x<360^{\circ}$
180°
$\mathrm{Y} 1=\tan ^{2} x-3$
Window settings
$x\left[-90^{\circ}, 450^{\circ}\right]$
$y[-4,4]$

Solution: $\quad x=60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$
What does the period appear to be? 180°
What would the general solution be? $\left\{\begin{array}{l}x=60^{\circ}+180^{\circ} n \\ x=120^{\circ}+180^{\circ} n\end{array}\right.$
Why does this not look like a tangent graph anymore?

$$
\text { it is } \tan ^{2}(x)
$$

3) Determine the general solution for the trigonometric equation: $10=-6 \cos \frac{\pi}{12} x+8$
a) Graphical solution

Use your knowledge of trigonometric functions to determine the amplitude, period, vertical displacement and phase shift for the function $y=-6 \cos \frac{\pi}{12} x+8$. Use this information to help to label the axes on the graph above.

What is the general solution?
b) Algebraic solution

To solve the equation $10=-6 \cos \frac{\pi}{12} x+8$ algebraically, one technique is to use substitution. In this instance, what substitution might you make?

$$
\frac{\pi}{12} x=a
$$

$$
10=-6 \cos a+8
$$

$$
-8
$$

$$
-8
$$

$$
\frac{+2}{-6}=\frac{-6 \cos a}{-6}
$$

$$
-\frac{1}{3}=\cos a
$$

(2) ref angle
$\cos a=\frac{-1}{3}$
$\cos a_{r}=\frac{1}{3}$

$$
\text { Q2: } \begin{aligned}
a & =\pi-1.23 \\
a & =1.91 \\
\text { Q3: } a & =\pi+1.23 \\
& =4.37
\end{aligned}
$$

$$
a_{r}=\cos ^{-1}\left(\frac{1}{3}\right)
$$

$$
a_{r}=1.23
$$

\[

\]

