5.3 Graphing the Tangent Function

Recall the different definitions of $\tan \theta$ that you now have

Right triangle	Circular definition	Using sine and cosine
$\tan \theta = \frac{opp}{adj}$	$\tan\theta = \frac{y}{x}$	$\tan\theta = \frac{\sin\theta}{\cos\theta}$
Unit Circle – where the tangen intersects the terminal	arm. (I, tanð) ^{ta} r	Slope Definition an θ = slope of the terminal arm $1Se = \frac{y}{x}$ $m = \frac{y}{x} = 4an \Theta$

To graph $y = \tan \theta$, we will begin by making a table of values using what we know about the special triangles. Give exact values and decimal approximations to 2 decimal places.

		⊖ <u>R</u> =30							
θ	0	30^{0}	45°	60^{0}	90 ⁰	120^{0}	135 ⁰	150^{0}	180^{0}
$\tan \theta$	0	.58	1	1.73	n.p	~ .58	-1	-1.73	0

Note that after you reach $\theta = 180^{\circ}$, the values for tan θ start to repeat.

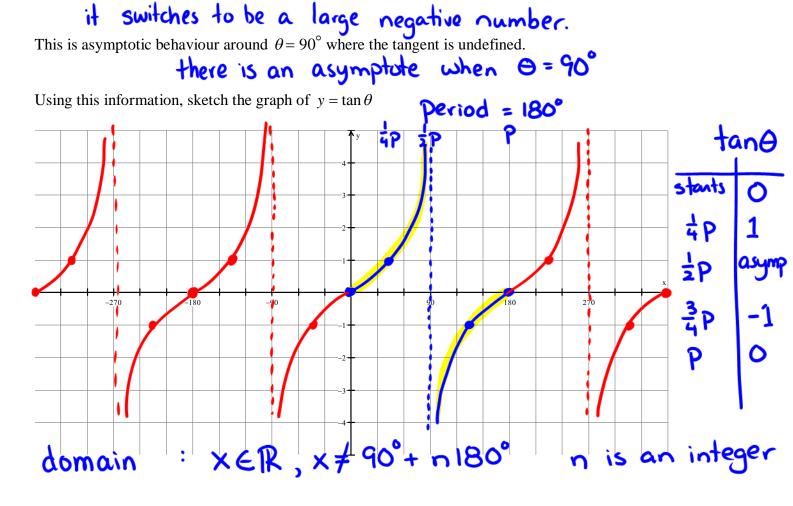
		210 ⁰								
$\tan \theta$	6	+.58	+1	+1.73	np	58	-1	-1.73	0	
tanθ repeats every 180° .: period for tanθ is π ^R or 180°										
unlike sind or cost which have a period of 360°										

The most interesting behaviour of the tangent function occurs as θ approaches angles such as 90°, 270°, 450°, etc. where tan θ is undefined.

Let's investigate the values of $\tan \theta$ for angles very close to 90°. For convenience, we will use degree measurement.

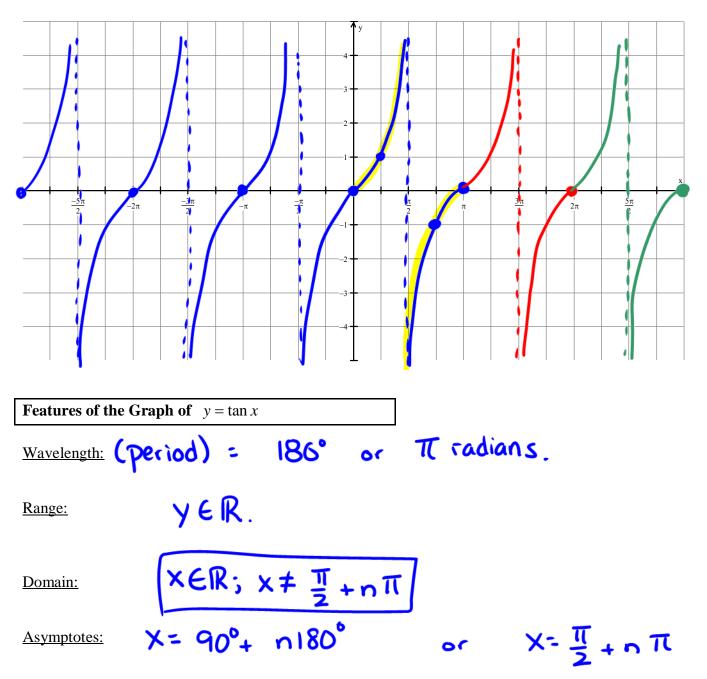
Fill in the values for $\tan \theta$ in the tables below.

θ	$tan \theta$
70°	2.747
80° 89°	5.67
89°	57.3
89.9°	573
89.99°	5729
89.999°	57296
89.9999°	572958

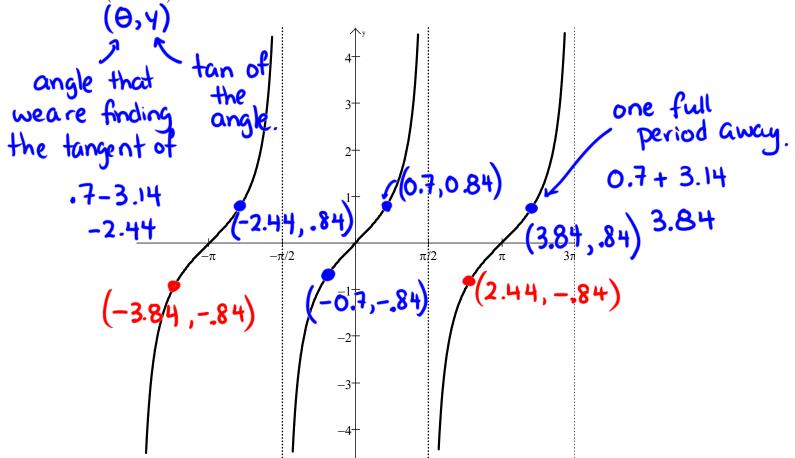

heta	$\tan \theta$
90.0001°	-572958
90.001°	-57296
90.01°	-5729
90.1°	-573
91°	-57.3
100°	- 5.67
110°	-2.747

Questions:

1) What happens to $\tan\theta$ as θ gets closer and closer to 90°?


becomes a large positive number

2) What happens to $\tan \theta$ as θ "jumps over" the 90° threshold to 90.0001°?


What is the period of the tangent function? 180° or π radians. What is the amplitude of the tangent function? no amplitude X= 90° + 180°n where nisan X= 180°n integer. What are the equations of the asymptotes? What are the *x*-intercepts?

Construct the graph of $y = \tan x$, where x is any real number.

The Graph of $y = \tan \theta$

The point (0.7,0.84) is on the graph of $y = \tan \theta$. Find the coordinates of 4 other points on the graph:

How many solutions to the equation $\tan \theta = -0.84$ does the graph above show?

3 solutions shown, but there are really an infinite number. What are these solutions?

$\theta = -3.84, -0.7, 2.44$

How would you describe all the solutions to $\tan \theta = 0.84$?

 $\Theta = -0.7 + n\pi$ where n is Does the equation $\tan \theta = k$ where k is any real number always have a solution?

any integer. range: yER, you can have any value k and there will be a solution for tan 0=k.