5.3 Graphing the Tangent Function

Recall the different definitions of $\tan \theta$ that you now have

To graph $y=\tan \theta$, we will begin by making a table of values using what we know about the special triangles. Give exact values and decimal approximations to 2 decimal places.

θ	0	30°	45^{0}	60°	90°	120°	135°	150°	180°
$\tan \theta$	0	.58	1	1.73	$\cap . P$	-.58	-1	-1.73	0

Note that after you reach $\theta=180^{\circ}$, the values for $\tan \theta$ start to repeat.

θ	180°	210°	225°	240°	270°	300°	315°	330°	360°
$\tan \theta$	0	+.58	+1	+1.73	$n p$	-.58	-1	-1.73	0

$\tan \theta$ repeats every $180^{\circ} \therefore$ period for $\tan \theta$ is π^{R} or 180° unlike $\sin \theta$ or $\cos \theta$ which have a period of 360°

The most interesting behaviour of the tangent function occurs as θ approaches angles such as $90^{\circ}, 270^{\circ}, 450^{\circ}$, etc. where $\tan \theta$ is undefined.

Let's investigate the values of $\tan \theta$ for angles very close to 90°. For convenience, we will use degree measurement.

Fill in the values for $\tan \theta$ in the tables below.

θ	$\tan \theta$
70°	$\mathbf{2 . 7 4 7}$
80°	5.67
89°	57.3
89.9°	573
89.99°	5729
89.999°	57296
89.9999°	572958

θ	$\tan \theta$
90.0001°	-572958
90.001°	-57296
90.01°	-5729
90.1°	-573
91°	-57.3
100°	-5.67
110°	$-\mathbf{2 . 7 4 7}$

Questions:

1) What happens to $\tan \theta$ as θ gets closer and closer to 90° ? becomes a large positive number
2) What happens to $\tan \theta$ as θ "jumps over" the 90° threshold to 90.0001° ?
it switches to be a large negative number.
This is asymptotic behaviour around $\theta=90^{\circ}$ where the tangent is undefined.
there is an asymptote when $\theta=90^{\circ}$
Using this information, sketch the graph of $y=\tan \theta$

What is the period of the tangent function? 180° or π radians.
What is the amplitude of the tangent function? no amplitude
What are the equations of the asymptotes? $x=90^{\circ}+180^{\circ} n$
$x=180^{\circ} n$$\left\{\begin{array}{r}\text { where his an } \\ \text { integer. }\end{array}\right.$ What are the x-intercepts?

Construct the graph of $y=\tan x$, where x is any real number.

Features of the Graph of $y=\tan x$
Wancemerter $($ Period $)=180^{\circ}$ or π radians.

Range:

$$
y \in \mathbb{R} .
$$

Domain:
$x \in \mathbb{R} ; x \neq \frac{\pi}{2}+n \pi$
Asymptotes:

$$
x=90^{\circ}+n 180^{\circ}
$$

The Graph of $y=\tan \theta$
The point $(0.7,0.84)$ is on the graph of $y=\tan \theta$. Find the coordinates of 4 other points on the graph:
$(\theta, 4)$

How many solutions to the equation $\tan \theta=-0.84$ does the graph above show?
3 solutions shown, but there are really an What are these solutions? infinite number.

$$
\theta=-3.84,-0.7,2.44
$$

How would you describe all the solutions to $\tan \theta=0.84$?
$\theta=-0.7+n \pi$ where n is Does the equation $\tan \theta=k$ where k is any real number always have a solution? any integer. range: $y \in \mathbb{R}$, you can have any value k and there will be a solution for $\tan \theta=k$.

