

5.2Transforming Sinusoidal Functions

	Original function	New function	Transformation
а	$y = x^2$	$y = x^2 + 3$	moves up 3
b	y = f(x)	y = f(x) - 2	moves down 2
c	$y = \sqrt{x}$	$y = \sqrt{x+2}$	moves left 2
d	$y = f \ y = f\left(x\right)$	$y = f\left(x - 6\right)$	moves right 6

For each of the following, identify the transformation that occurs:

The graphical translations that transform functions can also be applied to the graphs of sine and cosine.

Predict what the graphs of $y = \sin \theta + 3$ will look like, and then graph using technology:

Determine the maximum and minimum values for the function you graphed above. How does this compare to the value of d?

Using the Desmos Graphic Calculator, graph y = cos(x-c) and add a slider for the parameter *c*. What effect does changing the value of *c* have on the graph of the function?

Graph each of the following functions on the grids provided:

Note the transformation is the same whether you are measuring in degrees or radians.

Phase Shift $y = \sin(\theta - c)$ When graphing a sinusoidal function, a horizontal translation is also called the<u>phase shift</u> and is represented by the parameter c.• If c > 0, then the graph is translated <u>to the right</u>.• If c < 0, then the graph is translated <u>to the left</u>.• If c < 0, then the graph is translated <u>to the left</u>.Note the effect that the minus sign has on the equation of the function.For example, if c = 4, then the equation of the transformed function is: $y = \sin(\Theta - 4)$ if C = -2 $y = \sin(\Theta - -2)$ $er y = \sin(\Theta + 2)$

Example 2:

Sketch each of the functions given. State how each is transformed from its original function:

Note: This function can also be graphed using 5 key points:

Start (max)	middle	minimum	middle	1 full period
0 - 17/3	π/4 - π/3	π/2 - π/3	3π/4 - π/3	π - π/3
-π/3	- 11/12	Ψ6	511/12	^{2π} /3

												, phase	shif	ł

The graph of $y = \cos x$ is translated 3 units up and $\frac{\pi}{3}$ units to the right. It has been stretched vertically by a factor of 2 and reflected in the x-axis. Determine the equation of this function and sketch the graph:

$$\gamma = -2\cos(x - \frac{\pi}{3}) + 3$$