

5.2Transforming Sinusoidal Functions

For each of the following, identify the transformation that occurs:

	Original function	New function	Transformation
a	$y=x^{2}$	$y=x^{2}+3$	moves uP 3
b	$y=f(x)$	$y=f(x)-2$	moves down 2
c	$y=\sqrt{x}$	$y=\sqrt{x+2}$	moves left 2
d	$y=f y=f(x)$	$y=f(x-6)$	moves right 6

The graphical translations that transform functions can also be applied to the graphs of sine and cosine.
Predict what the graphs of $y=\sin \theta+3$ will look like, and then graph using technology:

central $\rightarrow 3$
$\mathrm{min} \rightarrow 2$
Determine the maximum and minimum values for the function you graphed above. How does this compare to the value of d ?

Vertical Displacement $y=\sin \theta+d$

When graphing a sinusoidal function, a vertical translation is also called the vertical displacement and is represented by the parameter d.

- If $d>0$, then the graph is translated up $|d|$ units._. $\}$ central axis at " d "
- If $d<0$, then the graph is translated down $|d|$ units \qquad _.
The vertical displacement can also be calculated as:

$$
\begin{gathered}
d=\frac{\max +\min }{2} \text { "taking average or finding the middle } \\
\text { of max and min" }
\end{gathered}
$$

Open the graphic calculator website at http://www.desmos.com/calculator Entering in the function $y=\sin \theta+d$ will let you create a "slider" that will vary the value of d.

What happens to the graph as d varies? graph moves up/down central axis/middle $=d$

Using the Desmos Graphic Calculator, graph $y=\cos (x-c)$ and add a slider for the parameter c. What effect does changing the value of c have on the graph of the function? moves graph left/right without changing the period.

Graph each of the following functions on the grids provided:

Note the transformation is the same whether you are measuring in degrees or radians.

Phase Shift $y=\sin (\theta-c)$
When graphing a sinusoidal function, a horizontal translation is also called the phase shift and is represented by the parameter c.

- If $c>0$, then the graph is translated to the right.
- If $c<0$, then the graph is translated to the left.

Note the effect that the minus sign has on the equation of the function.
For example, if $c=4$, then the equation of the transformed function is:

$$
\begin{aligned}
& y=\sin (\theta-4) \text { if } c=-2 \quad y=\sin (\theta-2) \\
& \text { or } y=\sin (\theta+2)
\end{aligned}
$$

Example 1:
Sketch the graph of $y=\sin \left(x-60^{\circ}\right)-2$ for two cycles:

O	$0^{\circ} \rightarrow 60^{\circ}$	
$\frac{1}{4} P$	$90^{\circ} \rightarrow$	150°
$\frac{1}{2} P$	$180^{\circ} \rightarrow 240^{\circ}$	
$\frac{3}{4} P$	$270^{\circ} \rightarrow 330^{\circ}$	
P	$360^{\circ} \rightarrow 420^{\circ}$	

$$
x \in \mathbb{R}
$$

Range:
\min
\max

$$
-3 \leq y \leq-1
$$

Use the language of transformations to compare your graph to the graph of $y=\sin x$.
phase shift of $+60^{\circ}$ and a vertical displacement of -2 .
Example 2:
Sketch each of the functions given. State how each is transformed from its original function:

$$
y=a \cos b(x-c)+d
$$

Example 3:

$$
\begin{aligned}
& \text { bis inside } \\
& \text { bracket }
\end{aligned}
$$

Consider the function: $y=2 \cos \left(2 x+\frac{2 \pi}{3}\right)+1$. Determine: \quad bracket $y=2 \cos 2\left(x+\frac{\pi}{3}\right)+1$

| Domain: $\quad x \in \mathbb{R}$ | Amplitude 2 | V. Disp. +1 |
| :--- | :--- | :--- | :--- |
| Range: $-1 \leq y \leq 3$ | Period $\frac{2 \pi}{(2)}=\pi$ | Phase Shift $-\frac{\pi}{3}$ |

Sketch the function:

Note: This function can also be graphed using 5 key points:

Start (\max)	middle	minimum	middle	1 full period
$0-\pi / 3$	$\pi / 4-\pi / 3$	$\pi / 2-\pi / 3$	$3 \pi / 4-\pi / 3$	$\pi-\pi / 3$
$-\pi / 3$	$-\pi / 12$	$\pi / 6$	$5 \pi / 12$	$2 \pi / 3$

Example 4:

The graph of $y=\cos x$ is translated 3 units up and $\frac{\pi}{3}$ units to the right. It has been stretched vertically by a factor of 2 and reflected in the x-axis. Determine the equation of this function and sketch the graph:

$$
y=-2 \cos \left(x-\frac{\pi}{3}\right)+3
$$

