5.1b Horizontal Stretches of sine and cosine

Recall the transformation that occurs when the function $y=f(x)$ is mapped to $y=f(b x)$:
a horizontal stretch by a factor of $\frac{1}{b}$

Open the graphic calculator website: http://www.desmos.com/calculator Entering in the function $y=\sin b \theta$ will let you create a "slider" that will vary the value of b.

Note the following as b varies.

Amplitude: does not change.
y-intercept: does not change
vertical displacement: middle does not change
x-intercept:
changes. period: changes

What effect does b have on the function, $y=\sin b x$?

- only changes period which also changes the x-intercepts.
Since transformations apply to the domain and range of a function, the stretch caused by b can also be applied to the period:

This is the interval of one cycle for $y=\sin x$ or $y=\cos x$ measured in radians

$$
\frac{0}{b} \leq \frac{b x}{b} \leq \frac{2 \pi}{b}
$$

1 full period.

$$
0 \leq x \leq \frac{2 \pi}{b}
$$

This is the interval of one cycle for $y=\sin x$ or $y=\cos x$ measured in degrees

$$
\begin{array}{ll}
0 \leq x \leq 360^{\circ} \leftarrow \text { period for } y=\sin x \text { or } y=\cos x \\
0 \leq|b x| \leq 360^{\circ} \\
\frac{0}{b} \leq \frac{b x}{b} \leq \frac{360^{\circ}}{b} & 0 \leq x \leq \frac{360^{\circ}}{b}
\end{array}
$$

note: $\frac{360^{\circ}}{b}$ is equivalent to $360 \times \frac{1}{b}$

* amplitude is always a positive number
Example 1 What is the period and amplitude for each function?

	Function	Period	
a)	$y=-5 \cos 3 x$	$\frac{360^{\circ}}{3}$ or $\frac{2 \pi}{3}$	5
b)	$y=2 \sin \frac{1}{2} x$	$\frac{360^{\circ}}{\frac{1}{2}}$	720° or 4π
c)	$y=-2 \cos 3 x$	$\frac{360^{\circ}}{3}$ or $\frac{2 \pi}{3}$	2

Example 2 Without using the graphing calculator, sketch the graph of $y=\cos \frac{1}{2} x$ for $-2 \pi \leq x \leq 2 \pi$.

Write an equation for the graph shown below:

sine because it starts at $0 /$ in the middle.

$$
\begin{aligned}
& \text { period }=\pi \\
& y=-\sin 2^{6} x \quad \frac{2 \pi}{b}=\pi \\
& \frac{2 \pi}{b}=\text { period } \\
& \begin{array}{l}
\frac{2 \pi}{b}=\pi \\
b=\frac{2 \pi}{\pi}=2
\end{array}
\end{aligned}
$$

Example 4

Predict the period of the following trigonometric function. Graph the functions.

Example 5
Write a trigonometric equation to match the graph below:

