5.1b Horizontal Stretches of sine and cosine

Recall the transformation that occurs when the function y = f(x) is mapped to y = f(bx):

a horizontal stretch by a factor of t

What effect does *b* have on the function, $y = \sin bx$?

 $0 < |bx| < 360^{\circ}$

-only changes period which also changes the x-intercepts.

Since transformations apply to the domain and range of a function, the stretch caused by *b* can also be applied to the period:

This is the interval of one cycle for $y = \sin x$ or $y = \cos x$ measured in radians

Teplace
$$\begin{pmatrix} 0 \le x \le 2\pi & \text{shows one full cycle for } y = \sin x \\ 0 \le |bx| \le 2\pi & \text{to make } y = \sin (bx) & x \\ bx & 0 \le bx \le 2\pi & \text{i full period.} \\ \overline{b} & \overline{b} & \overline{b} & 0 \le x \le \frac{2\pi}{b} & 0 \le \frac{2\pi}$$

This is the interval of one cycle for $y = \sin x$ or $y = \cos x$ measured in degrees

$$0 \le x \le 360^{\circ}$$
 ~ period for $\gamma = \sin x$ or $\gamma = \cos x$

* amplitude is always a positive number

Example 1	What is the period and amplitude for each function?
-----------	---

	Function	Period	Amplitude
a)	$y = -5\cos 3x$	$\frac{360^{\circ}}{3} \circ \frac{2\pi}{3}$	5
b)	$y = 2\sin\frac{1}{2}x \qquad \frac{360^{\circ}}{\frac{1}{2}}$	720° ~ 4π	2.
c)	$y = -2\cos 3x$	$\frac{360^{\circ}}{3} \circ \frac{2\pi}{3}$	2

Example 2 Without using the graphing calculator, sketch the graph of $y = \cos \frac{1}{2} x$ for $-2\pi \le x \le 2\pi$.

Example 3

Write an equation for the graph shown below:

Example 4

Example 5

Write a trigonometric equation to match the graph below:

