5.1a Graphing Sine and Cosine Functions

Complete the table:

$\sin \theta=y-\operatorname{coo}$ d

Θ	degrees	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
	radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π	$\frac{7 \pi}{6}$	$\frac{5 \pi}{4}$	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$	$\frac{5 \pi}{6}$	$\frac{7 \pi}{4}$	$\frac{11 \pi}{6}$	2π
$\sin \theta$ exact	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$\frac{-\sqrt{3}}{2}$	$\frac{-\sqrt{2}}{2}$	$-\frac{1}{2}$	0	
sin Θ decimal	0	0.5	0.7	0.86	1	$\mathbf{0 . 8 6}$	0.7	0.5	0	-.5	-.7	-.86	-1	-.86	-.7	-.5	0	

Sketch the graph in degrees:

Sketch the graph in radians over the domain $0 \leq \theta<2 \pi$:

Sinusoidal curve:

- a curve that oscillates repeatedly up and down from a central line or axis

Sketch the function: $y=\sin \theta$, but extend the domain to $0 \leq \theta<8 \pi$ Observations about the graph of sine:

The curve is sinusoidal and \qquad .
The domain is \qquad periodic .

The range is $-1 \leq \theta \leq 1$ \qquad , with a minimum value of -1 and a maximum value of \qquad .

The period is \qquad and the amplitude is \qquad .

The y-intercept is \qquad .

The first θ-intercept is at \qquad and repeats every \qquad π _.

Amplitude is the maximum vertical distance the graph of a sinusoidal function varies above or below the horizontal central axis.

$$
\begin{aligned}
& x \text {-int }= \pi+n \pi \quad \text { or } \quad x \text {-int }= \\
& n \text { because first } x-i n t=0
\end{aligned}
$$

Using technology, sketch the function: $y=\cos \theta$ over the domain: $0 \leq \theta<2 \pi$ In what ways is this curve different from that of $y=\sin \theta$? In what ways is It similar?

The graphs of $y=\sin \theta$ and $y=\cos \theta$ are periodic_ functions that repeat over a specific period. The shape of the graph is a sinusoidal curve.

Properties that the graphs share:

- Maximum value
- Minimum value
- Amplitude
- Domain
- Range
- Period

Ways in which these graphs differ:

- y-intercept
- θ-intercepts.

Amplitude of a Sinusoidal Function
$y=\sin x$ is related to $y=a \sin x$ in the same way that $y=f(x)$ is related to $y=a f(x)$.

Sketch the graph of the function $y=3 \sin x$

a coefficient of 3 causes a vertical expansion by a factor of 3 .

Sketch the graph of the function $y=4 \cos x$
This is transformed by a vertical stretched by a factor of \qquad 4 .
Maximum: \qquad Minimum \qquad -4

Amplitude: \qquad
Domain: $\quad x=\mathbb{R}$
Range: $[-4,4]$

Sketch the graph of the function $y=.25 \cos x$
This is transformed by a vertical compressed by a factor of \qquad .25 .

Amplitude: .25
Domain: $\quad x=\mathbb{R}$
Range: $[-.25, .25]$

Consider the function: $y=-.25 \cos x$. What happens if $a<0$ for the function $y=a \cos x$?

Sketch the function $y=-3 \sin x$:

The coefficient, a, in the function $y=a \sin x$ or $y=a \cos x$ results in a vertical stretch by a factor of \qquad a .

In a sinusoidal curve, this changes the amplitude

If $a<0$, then the graph will also be vertically reflected.

The amplitude of a function can be determine by looking at the graph of the function:
Consider $y=5 \sin x$

Determine the maximum and minimum values for y.

$$
\begin{aligned}
& \max =5 \\
& \min =-5
\end{aligned}
$$

What is the total distance between the maximum and the minimum?

How is this related to the amplitude?

$$
\frac{\text { total distance }}{2}=\text { amplitude }
$$

Amplitude can be determine using a formula:

$$
\text { amplitude }=
$$

\max value of $y-\min$ value
2

$$
\begin{aligned}
& p 233 \# 1,2,3,14,15 \\
& p 233 \# 4,6,7,11
\end{aligned}
$$

