5.1a Graphing Sine and Cosine Functions

sin0= y-coord

Complete the table:

	13																	
	degrees	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
θ	radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	FM	FIN	ZI M	514	510	π	투이	514	护고	Fin	510	7 1 7	110	21
sin O exact		0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	うう	-	ちょく	ly IN	12	0	-14	ц <mark>г</mark> л	1 S I N	-1	ry ra	ry in	-12	0
d	sin Ə lecimal	0	0.5	0.7	0.86	1	0.86	0.7	0.5	0	- 5	+	86	-1	86	1.	5	0

Sketch the graph in degrees:

Sketch the graph in radians over the domain $0 \le \theta < 2\pi$:

Sinusoidal curve: - a curve that oscillates repeatedly up and down from a central line or axis

The range is $-1 \le \theta \le 1$, with a minimum value of -1 and a maximum value of 1. The period is 2π and the amplitude is 1. The period is 2π and the amplitude is 1. The y-intercept is 0. The first θ -intercept is at π and repeats every π \times -int = $\pi + n\pi$ or \times -int = $n\pi$ \leftarrow because first x-int=0 Using technology, sketch the function: $y = \cos \theta$ over the domain: $0 \le \theta < 2\pi$ In what ways is this curve different from that of $y = \sin \theta$? In what ways is It similar?

Amplitude of a Sinusoidal Function

 $y = \sin x$ is related to $y = a \sin x$ in the same way that y = f(x) is related to y = af(x).

Sketch the graph of the function $y = 4 \cos x$

This is transformed by a vertical <u>stretched</u> by a factor of <u>4</u>. Maximum: <u>4</u> Minimum: <u>-4</u> Amplitude: <u>4</u> Domain: x = RRange: [-4, 4]

Sketch the graph of the function $y = .25 \cos x$ This is transformed by a vertical <u>Compressed</u> by a factor of <u>.25</u>. Amplitude: <u>.25</u> Domain: x = IRRange: $\begin{bmatrix} -.25 \\ .25 \end{bmatrix}$

Consider the function: $y = -.25 \cos x$. What happens if a < 0 for the function $y = a \cos x$? negative coefficient causes a flip/reflection

The coefficient, *a*, in the function $y = a \sin x$ or $y = a \cos x$ results in a vertical <u>stretch</u> by a factor of <u>O</u>.

In a sinusoidal curve, this changes the <u>amplitude</u>

If a < 0, then the graph will also be vertically **reflected**.

The amplitude of a function can be determine by looking at the graph of the function:

