

Relating Distance-Time and Velocity-Time Graphs

- Acceleration can be calculated as the slope of a velocity - time \qquad graph
- Acceleration is measured as \qquad $\mathrm{m} / \mathrm{s}^{2}$

airbags work to increase the amount of time to change velocity. airbag increases your Δt which reduces your acceleration, because it makes denominator in

$$
\vec{a}=\frac{\overrightarrow{A V}}{\Delta t} \text { larger }
$$

interval
$0-t_{1}$: positive acceleration
position-time graph
-curve upwards
velocity-time graph - positive slope.
$t_{1}-t_{2}$: no acceleration uniform motion.
$t_{2}-t_{3}$: negative acceleration

- negative slope on a velocity time graph.

Calculating Acceleration

- Remember the relationship between acceleration, velocity and

$$
\overrightarrow{\Delta V}=\vec{V}_{f}-\overrightarrow{V_{i}}
$$

Example 1:
A car accelerates from rest. It reaches a velocity of $8 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$ in 4 seconds.
What is its acceleration?
at rest means $0 \mathrm{~m} / \mathrm{s}$.

$$
\begin{array}{ll}
\text { isitstacceleration? } & \overrightarrow{V_{i}}=0 \mathrm{~m} / \mathrm{s}
\end{array} \quad+8 \mathrm{~m} / \mathrm{s}-C \text { C }
$$

Example 2:
A motorcycle goes from $5 \mathrm{~m} / \mathrm{s}[E]$ to $2 \mathrm{~m} / \mathrm{s}[E]$ in 8 seconds. What is its acceleration?

\vec{a}	$=\frac{-3 \mathrm{~m} / \mathrm{s}}{8 \mathrm{~s}}$
\vec{a}	
\vec{a}	$=-.375 \mathrm{~m} / \mathrm{s}^{2}$ or $.375 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{w}]$

Example 3:
Frank is in a car accident, and his airbags help slow his velocity from $+22 \mathrm{~m} / \mathrm{s}$ to $0 \mathrm{~m} / \mathrm{s}$ in 0.5 seconds. What is his acceleration?

$$
\begin{array}{ll}
\overrightarrow{V_{i}}=+22 \mathrm{~m} / \mathrm{s} & \overrightarrow{A V}=0 \mathrm{~m} / \mathrm{s}-22 \mathrm{~m} / \mathrm{s} \\
\vec{V}_{f}=0 \mathrm{~m} / \mathrm{s} & \overrightarrow{\Delta V}=-22 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Example 4:
Frank was in a car accident because he was driving recklessly. His car can accelerate at $8 \mathrm{~m} / \mathrm{s}^{2}$. If he was driving at a constant speed of $+15 \mathrm{~m} / \mathrm{s}$, how long did it take him to accelerate to $+22 \mathrm{~m} / \mathrm{s}$?

$$
\begin{aligned}
\vec{a} & =+8 \mathrm{~m} / \mathrm{s}^{2} \\
\vec{\Delta} \overrightarrow{\Delta v} & =(+22)-(+15) \\
& =+7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Example 5:

$$
\begin{aligned}
& \overrightarrow{\Delta V}=(+2)-(+5) \\
& \overrightarrow{\Delta V}=-3 \mathrm{~m} / \mathrm{s} \\
& \text { and his airbags help slow his ven } \\
& \text { minds. What is his acceleration } \\
& \overrightarrow{A V}=0 \mathrm{~m} / \mathrm{s}-22 \mathrm{~m} / \mathrm{s} \\
& \overrightarrow{\Delta V}=-22 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

I'm on a boat, and traveling east at $6 \mathrm{~m} / \mathrm{s}$. The boat accelerates at $0.5 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~W}]$ for 5 seconds. What is the boat's final velocity?

$$
\begin{array}{ll}
\vec{a}=-.5 \mathrm{~m} / \mathrm{s}^{2} & \overrightarrow{\Delta v}=\vec{a} \times \Delta t \\
\Delta t=5 \mathrm{~s} & \vec{\Delta}=-.5 \mathrm{~m} / \mathrm{s}^{2} \times 5 \mathrm{~s} \\
\overrightarrow{\Delta v}=? & \overrightarrow{\Delta V}=-2.5 \mathrm{~m} / \mathrm{s}
\end{array}
$$

