$$
\begin{aligned}
& y=m x+b \\
& A x+B y+C=0 \\
& y-y=m(x-x)
\end{aligned}
$$

7.4 Warm-Up $\quad y-y_{1}=m\left(x-x_{1}\right)$

1. Identity the slop of each linear equation. change to slope intercept

a) $\frac{2}{3}$ is $-\frac{3}{2}$ as $\frac{4}{5}$ is so $\square-\frac{5}{4}$ b) -4 is $\operatorname{to\frac {1}{4}\text {as}-3\text {isto}\square \frac {1}{3}\text {c}\frac {1}{2}\text {isto}-2\text {as}-\frac {1}{5}\text {isto}\square .5~}$
parallel lines have equal slopes
perpendicular lines are opposite AND reciprocal

Objectives:

- Relate the slopes of parallel lines
- Relate the slopes of perpendicular lines
- Solve problems using parallel and perpendicular lines

Find the slopes of each of the line segments below.

$$
\begin{array}{ll}
m_{A B}=\frac{1}{5} & m_{\mathrm{EF}}=-\frac{2}{3} \\
\mathrm{~m}_{\mathrm{CD}}=\frac{1}{5} & \mathrm{~m}_{\mathrm{GH}}=-\frac{2}{3}
\end{array}
$$

What do you notice about the slopes of parallel lines?
Parallel Lines: have the same slope
and
2 lines with the same slope are parallel

The line shown has a slope of \cap, P.
Draw a parallel line on the same grid. What is the slope of the parallel line?
slope of parallel line $=n . p$.

$$
x=2
$$

$$
x=3
$$

Find the slopes of each of the following pairs of perpendicular lines. Write all answers as fractions in lowest terms:

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{AB}}=-\frac{2}{3} \\
& \mathrm{~m}_{\mathrm{CD}}=\frac{3}{2}
\end{aligned}
$$

$$
m_{\mathrm{EF}}=-\frac{1}{2}
$$

$$
\mathrm{m}_{\mathrm{GH}}=\frac{2}{1}
$$

Perpendicular Lines: have slopes that are opposites and reciprocals
$m=\frac{2}{7}$ and $-\frac{7}{2}$ are perpendicular

Draw the line given by the equation:

$$
3 x+6 y-12=0
$$

$$
\begin{array}{l|l}
x & y \\
\hline 0 & 2 \\
4 & 0
\end{array}
$$

Draw the perpendicular line that passes through

$$
\begin{aligned}
& \text { (-3,1) and find its equation. } \\
& \text { perpendicular slope }=\frac{4}{2} \text { or } \frac{2}{1} \\
& \text { point slope } \\
& y-k=m(x-h)
\end{aligned}
$$

Draw the lines given by the equations:

$$
\begin{array}{cc}
3 x+4 y-8=0 \\
-4 y & -4 y \\
6 x+8 y-8=0 & \frac{3 x-8}{-4}=-\frac{4 y}{-4} \\
-8 y & -8 y \\
\frac{6 x-8}{-8}=\frac{-8 y}{-8} & \frac{-3}{4} x+2
\end{array}
$$

The lines are parallel because:

$$
y=\frac{-6}{8} x+1=y
$$

P390 \#1-7ace

Find the equation of a perpendicular line to $\mathbf{3 x + 4 y - 6 = 0}$
Some different methods you could try include:
(1) need to find the slope

$$
\begin{aligned}
& m=\frac{4}{3} \\
& y=\frac{4}{3} x+\square
\end{aligned}
$$

\qquad

$$
\begin{aligned}
& \frac{3 x-6}{-4}=\frac{-4 y}{-4} \\
& \frac{-3}{4} x+\frac{6}{4}=y
\end{aligned}
$$

Three coordinates $\mathrm{A}(-1,-1), \mathrm{B}(3,-2)$ and $\mathrm{C}(4,3)$ form a triangle. Is this a right triangle?
no. in order for angle
B to be a 90° angle,
the slope of $A B$ must be perpendicular to dope $B C$.
They are not perpendicular because they are not opposite and reciprocal.

