Math 10 Chapter 7

Equations Using Slope Intercept Form

Worksheet 1

1. Convert each equation into standard form:
a) $y=\frac{2}{3} x+3$
b) $y=-\frac{3}{2} x+2$
c) $y=\frac{1}{2} x-\frac{1}{3}$
d) $y=-3 x-1$
e) $y=2 x-4$
f) $y=2 x+5$
2. Convert each equation into slope intercept form:
a) $3 x+y-4=0$
b) $2 x-y+3=0$
c) $x+y+1=0$
d) $2 x+3 y-5=0$
e) $3 x-2 y+1=0$
f) $x+2 y-4=0$
3. Determine the equation of each line with the given slope and coordinate. Give your answer in both slope intercept format and standard form.
a) $m=2 ; \mathrm{A}(3,2)$
b) $m=1 ; \mathrm{P}(-2,-3)$
c) $m=3$; x-intercept 5
d) $m=\frac{2}{3} ; \mathrm{B}(2,3)$
e) $m=-\frac{2}{5} ; \mathrm{Q}(1,5)$
f) $m=1$; y-intercept -2
g) $m=\frac{4}{3} ; \mathrm{C}(7,5)$
h) $m=-2 ; \mathrm{R}(0,5)$
i) $m=-1 ; \mathrm{x}$-intercept $\frac{1}{2}$
4. From each pair of coordinates, determine the equation of the line in slope intercept form.
a) $\mathrm{A}(2,4) ; \mathrm{B}(5,2)$
b) $\mathrm{M}(-1,3)$; $\mathrm{N}(2,1)$
c) $\mathrm{O}(0,0) ; \mathrm{P}(3,7)$
5. Rewrite each equation in general form.

$$
5 y=5\left(-\frac{1}{5} x-3\right)
$$

a) $y=\frac{2}{3} x+1$
b) $y=-\frac{1}{5} x-3$

$$
3 y=3\left(\frac{2}{3} x+1\right)
$$

$$
3 y=\frac{6}{3} x+3
$$

$$
\begin{aligned}
& 5 y=-1 x-15 \\
& 0=-1 x-5 y-15 \\
& x+5 y+15=0
\end{aligned}
$$

$-3 y^{2}$. Rewrite each equation in general form.
a) $y-3=2(x+5)$

3. Simplify.
a) $2\left[\frac{3}{2}(x-4)\right]$
$2\left[\frac{3}{2} x-6\right]$
$3 x-12$
b) $y+2=4(x-1)$

b)

$$
\begin{aligned}
& 5\left[\frac{4}{5 x-1]}\right] \\
& 5\left[\frac{4}{5} x-\frac{4}{5}\right] \\
& 4 x-4
\end{aligned}
$$

4. Visualize each of the following lines. Then, write the equation in slope-intercept form.
a) x-intercept of 4 and y-intercept of -5
b) passing through $(0,2)$ and $(4,0)$

5. On grid paper, draw each line. Then, write the equation of the line in slope-intercept form.
a) passing through $(2,5)$ and $(-1,-4)$
b) passing through $(-3,6)$ and $(0,0)$
can be used when the
7.3 Slope-Point Form y-intercept is not obvious and you cart easily

Objectives:

- Write an equation using the slope-point form
- Determine the equation of a line using two points

We've seen two ways to write the equation of a non-vertical line:
a) slope intercept form $y=m x+b$
b) general form

$$
0=A x+B y+C
$$

There is a third way called the \qquad slope - point form.

Use the point-slope method to find the equation of a line with a slope of 2 and passing through $(1,3)$.
Step:
Use the equation for slope. We only know one coordinate, so we'll use (x, y) to represent another, unknown coordinate.

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& (x-1) \cdot 2=\frac{y-3}{x-1} \cdot(x-1)
\end{aligned}
$$

$$
\begin{aligned}
& m=2 \quad(1,3) \quad(x, y) \\
& \text { Multiply both sides of the equation by the denominator: }
\end{aligned} \quad(x-1) \cdot 2=\frac{y-3}{x-1} \cdot(x-1)
$$

Your new equation shows both the coordinates of the

$$
2(x-1)=y-3
$$ known point and also shows the slope of the line

The point-slope equation of a line is written using

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

1) Slope m
2) A point $\left(x_{1}, y_{1}\right)$ make the x and y values appear to switch signs,
Write the point-slope equation for each line: -" signs in the formula

Slope of -3 and passing through
$(2,5)$
$y-Y_{1}=m\left(x-x_{v}\right)$
$y-5=-3(x-2)$

$$
\begin{aligned}
& y-2=\frac{3}{4}(x+3) \\
& m=\frac{3}{4} \quad(-3,2)
\end{aligned}
$$

A line passes through (3,6) and ($6,-2$). Find the equation of the line in slope-point form, and then convert to both slope intercept and general form.

1. Find the \qquad slope first.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-2-6}{6-3} \\
m & =\frac{-8}{3}
\end{aligned}
$$

2. Use one of the coordinates to write the equation of the line in slope-point form:

$$
\begin{array}{ccc}
\stackrel{(6,-2)}{(3,6)} & \text { or } & y-y_{1}=n\left(x-x_{i}\right) \\
y+2=-\frac{8}{3}(x-6) & y-6=-\frac{8}{3}(x-3)
\end{array}
$$

even though these have different numbers they really are the same equation.

The SDSS Mathletes are ordering team shirts. There is a set up fee, Find the cost is $\$ 8$ per shirt, where the number of shirts is represented by n. 8 shirts costs $\$ 89$. The total cost is C

1. Which should be the independent variable?

$$
\begin{array}{ll}
n \text { : shirts } & (n, c) \\
c: \text { total cost. } & (8,89)
\end{array} \quad m=8
$$

2. What is the equation for this line in slope-point form?

$$
y-89=8(x-8)
$$

3. What is the setup fee? setup fee

$$
\begin{aligned}
& \text { C-89.8(0-8) } \\
& \text { C. } \mathrm{Be}_{2}^{2}=-64
\end{aligned}
$$

4. How many shirts were bought if the total cost is $\$ 121$? the setup fee
is $\$ 25$

$$
\begin{aligned}
121-25 & =\text { shitsonly } \\
96 & =8 n \\
\frac{96}{8} & =12 \\
n & =12 \text { shirts }
\end{aligned}
$$

