3.4 \mathcal{N} ones: Using the Pythagorean Theorem

Review:

How can you prove this has a
 statement: $\left.\mid a^{2}+b^{2} \leq c^{2}\right)$ if two small areas add to make large area.

How do you find the length of one side for the square at left?

$$
\mathrm{A}=45 \mathrm{~cm}^{2}
$$

How would you find the length of the missing hypotenuse for the right triangle?
(1) Find the areas.
(2) Find the m
(3) Use $\sqrt{ }$ to find length

$$
\begin{aligned}
& \text { area } \\
& A=25^{5 \mathrm{~cm}}
\end{aligned}
$$

$$
{ }^{10 \mathrm{~cm}} \mathrm{~A}=100
$$

$$
\sqrt{125}=11.17 \ldots=11.2
$$

$$
\begin{gathered}
A=648 \mathrm{~cm} \underbrace{}_{6} A=100 \\
A=36
\end{gathered}
$$

$$
\begin{aligned}
& 3 \times 3=9 \quad 4 \times 4=16 \\
& \sqrt{13}=3.8
\end{aligned}
$$

$$
\sqrt{100}=10 \mathrm{~cm}
$$

missing side is 10 cm .

$$
A=9 \mathrm{ccm}_{2 \mathrm{~cm}} \quad A=13
$$

$$
A=4
$$

$$
A=36
$$

$$
\sqrt{64}=8
$$

$$
A=100
$$

(1) Find the areas.
The Pythagorean Theorem $\quad a^{2}+b^{2}=c^{2}$
(2) Use the known areas
 to find missing area
(3) $\sqrt{ }$ missing area to missing side.
Find the missing sides for each of the triangles below:

Jürgen is cooking meatballs in his kitchen. One of the meatballs rolls from one corner of the table, diagonally to the other corner. How far does it roll?

p104 \# 3-5 \#7-13

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
60^{2}+90^{2}= \\
3600+8100= \\
c^{2}=11700 \mathrm{~cm}^{2} \\
c=\sqrt{11700} \\
c=108.2 \mathrm{~cm} .
\end{gathered}
$$

