1.1 Translating Graphs of Functions

1. Comparing the graphs of $y=f(x)$ and $y=f(x)+k[$ or $y-k=f(x)]$
(a) Complete the following tables of values. Graph and label each of the functions on the grid

$$
y=|x|
$$

$$
y=|x|+3
$$

$$
y=|x|-3
$$

b) How are each of the following graphs obtained from the graph of $y=|x|$?
i) $y=|x|+3$ moved up
ii) $y=|x|-3$ 3 units moved down 3
c) In general, how is the graph of $y=|x|+k$ obtained from the graph of $y=|x|$
i) when $k>0$?

ii) when $k<0$?
eg $k=5$

$$
\begin{aligned}
& \text { eg } k=-2 \\
& y=|x|+-2 \text { or } \underbrace{\text { units }}_{y=|x|-2}
\end{aligned}
$$

$$
y=|x|+5
$$

d) The graph of $y=f(x)+k$ [or $y-k=f(x)$] is obtained when the graph of $y=f(x)$ undergoes a
\qquad shift (or translation) of k units. tran station $=$ move

If $k>0$, the graph of $y=f(x)$ is translated \qquad UP to obtain the graph of $y=f(x)+k$ [or $y-k=f(x)]$. If $k<0$, the graph of $y=f(x)$ is translated
\qquad to obtain the graph of $y=f(x)+k[$ or $y-k=f(x)]$. eg

$$
y=f(x)+3 \text { moves up }
$$

$$
y=f(x)-3
$$

moves
Note: The notation $y-k=f(x)$ is often used instead of $y=f(x)+k$ to emphasize that the parameter k involves a translation in the y-direction only. For example, instead of $y=|x|+3$, we could write $y-3=|x|$.

$$
y-3=f(x) \text { is same as } y=f(x)+3
$$

2. Comparing the graphs of $y=f(x)$ and $y=f(x-h)$

(a) Complete the following tables of values. Use the table of values to graph and label each of the functions on the grid.

$$
y=x^{2} \quad y=(x-3)^{2} \quad y=(x+3)^{2}
$$

x	y
-4	16
-3	9
-2	4
-1	1
0	0
1	1
2	4
3	9
4	16

x	y
-1	16
0	9
1	4
2	1
3	0
4	1
5	4
6	9
7	16

x	y
-7	16
-6	9
-5	4
-4	1
-3	0
-2	1
-1	4
0	9
1	16

b) How are each of the following graphs obtained from the graph of $y=x^{2}$?
i) $y=(x-3)^{2}$
ii) $y=(x+3)^{2}$

translation 3 units right.

c) In general, how is the graph of $y=(x-h)^{2}$ obtained from the graph of $y=x^{2}$
i) when $h>0$?
$h=4$
translation right.

$$
y=(x-4)^{2}
$$

ii) when $h<0$?
results in

$h=-4$

ii) $y=(x+3)^{2}$ translated 3 units left
d) The graph of $y=f(x-h)$ is obtained when the graph of $y=f(x)$ undergoes a

horizontal to the right
\qquad to obtain the graph of of $y=f(x-h)$. translated to the left \qquad to obtain the graph of $y=f(x-h)$.

Note that the equation $y=(x+3)^{2}$ can be written in the form $y=(x-h)^{2}$ as $y=(x--3)^{2}$. So in this case, $h=-3$ and the translation of $y=x^{2}$ is 3 units to the left.
3. Horizontal and vertical translations

By translating the graph of $y=|x|$, sketch the graph of $y-3=|x+2|$.
To obtain the graph of $y-3=|x+2|$, all points on the graph of $y=|x|$ will be translated left 2
horizontally: \qquad
vertically: \qquad up 3 .
Thus the point $(0,0)$ of $y=|x|$ will become the point $(-2,3)$ of $y-3=|x+2|$.
Likewise, the point $(1,1)$ of $y=|x|$ will become the point $(-1,4)$ of $y-3=|x+2|$, and the point $(-1$, 1) of $y=|x|$ will become the point $(-3,4)$ of $y-3=|x+2|$.

*horizontal changes only affect

Example 1:

Given the function $y=f(x)$, write the equation of the transformed function after each of the following translations.
a) a vertical translation 4 units down.

$$
\begin{aligned}
& y=f(x)-4 \\
& y=f(x-5)
\end{aligned}
$$

b) a horizontal translation 5 units to the right.
c) a horizontal translation 3 units to the left and a vertical translation 6 units up.

Example 2:

$$
y=f(x+3)+6
$$

Describe how the graphs of the following functions can be obtained from the graph of $y=f(x)$.
a) $y=f(x+4)$
b) $y=f(x)-5$
left 4
down 5
c) $y=f(x-2)+3$

Example 3:

In each case below, the given point is transformed into a second point by a certain translation. Find the coordinates of the second point.
a) a horizontal translation 3 units to the left

$$
\begin{aligned}
& \text { units to the left } \\
& (4,-6) \rightarrow(1,-6)
\end{aligned}
$$

b) a vertical translation 5 units down

$$
(-3,-5) \rightarrow(-3,-10)
$$

c) a horizontal translation 4 units to the right and a vertical translation 6 units up

$$
(-7,2) \rightarrow(-3,8)
$$

Example 4:

In each case below, describe the translation that transforms the first point onto the second point.
a) $(5,-2) \rightarrow(5,4)$

b) $(-6,-3) \rightarrow(5,-3)$
b) $(-6,-3) \rightarrow(5,-3)$
c) $(4,-7) \rightarrow(-2,-5)$

Example 5:

In each case below, a graph of $y=f(x)$ is shown. Sketch the graph of the translated function whose equation is given.
a) $y=f(x)-2$

c) $y-5=f(x+3)$

b) $y=f(x+3)$

Example 6:

Use the graph of $y=\sqrt{x}$ below to sketch the graph of $y+5=\sqrt{x+3}$.

Example 7:
The function $y=f(x)$ has x-intercepts of -6 and $10, y$-intercept of -9 , domain $\{x \geq-8\}$ and range $\{y \leq 2\}$

Give the same information for the functions defined below

