1.1 Graphs of Basic Functions

For each of the following functions, sketch a graph and indicate the domain and range

1. $y=a x+b$ or $y=m x+b$

Name of function linear
2. $y=a x^{2}$

Name of function quadratic
3. $y=a|x|$

Name of function absolute value.

Domain $\quad x=\mathbb{R}$
4. $y=a \sqrt{x}$

Name of function radical/root Domain $x \geq 0$ Range $y \geq 0$
5. $y=a x^{3}$

Name of function cubic
~

Domain

$$
x=\mathbb{R}
$$

6. $y=\frac{a}{x}$

Name of function reciprocal
asymptotes

7. Describe the graph of the following equation: $x^{2}+y^{2}=r^{2}$.

$$
\text { eg } \begin{aligned}
x^{2}+y^{2}=3^{2} \\
-x^{2}
\end{aligned} \Longleftrightarrow y^{2}=3^{2}-x^{2}, ~ \begin{aligned}
3^{2}-x^{2}
\end{aligned}
$$

Is this a function? no Why?
fails VLT

Give the domain and range.

$$
D:-3 \leq x \leq 3 \quad R:-3 \leq y \leq 3
$$

Note that the functions $y=\sqrt{r^{2}-x^{2}}$ and $y=-\sqrt{r^{2}-x^{2}}$ represent the upper and lower halves respectively of the circle $x^{2}+y^{2}=r^{2}$

Polynomial Functions

A polynomial function is a function in the form:

$$
f x=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}
$$

Where:

- $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are real (integers) numbers
- n is a natural number

The numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are called_ coefficients. The coefficient a_{n} of the highest power x^{n} is the leading coefficient term. The value of n is the degree. of the polynomial.

Linear Functions

A linear function is a degree 1 polynomial function of the form $f x=a x+b$.

Sketch each of the following linear functions, and state the domain and range.
What is the domain? $x=\mathbb{R}$

Quadratic Functions

A quadratic function is a polynomial function of degree 2 , which can be written in general form:
$f x=a x^{2}+b x+c$ or standard form: $f x=a x-p^{2}+q$

Example: Sketch the graph of $y=x^{2}-2 x-8$

Determine
i) the zeros (roots, x-intercepts)
-solve by factoring.

- graph $\underset{\sim}{\underset{\sim}{\leftrightarrows} \text { table }}$
ii) the y-intercept
- constant term
(sub in $x=0$)
iii) the coordinates of the vertex
- find (p, q)
- convert by completing
the square
- find axis of symmetry (between
and sub in for x.
iv) the domain and range

