4.4A Warmup

1. You are asked to find θ such that $\cos \theta=-0.542$ with $0 \leq \theta<2 \pi$. In terms of the unit circle what does this mean you are looking for? What are the values for θ ?

- 2 angles because there are 2 places where $x=-.542$

-Q2 and Q3

$$
\text { Q2: } \begin{aligned}
\theta & =\pi-1 \\
& =2.14
\end{aligned}
$$

Q 3: $\theta=\begin{array}{r}\pi+1 \\ 4.14\end{array}$
2. The point $Q(-3,5)$ lies on the terminal arm of an angle θ. Determine the exact value of each of the trigonometric ratios and the smallest positive value of θ in radians.
$(-3,5)$

(1) Find radius using pythag.

$$
\begin{array}{r}
(-3)^{2}+5^{2}=5^{2} \\
r=\sqrt{34}
\end{array}
$$

-given both x and y there is only I Q2 answer.

$$
\begin{array}{ll}
\sin \theta=\frac{5}{\sqrt{3} 4} & \csc \theta=\frac{\sqrt{34}}{5} \\
\cos \theta=\frac{-3}{\sqrt{3} 4} & \sec \theta=-\frac{\sqrt{34}}{3} \\
\tan \theta=-\frac{5}{3} & \cot \theta=-\frac{3}{5}
\end{array}
$$

4.4A Trigonometric Equations

The following are examples of different types of equations you have solved, along with some examples of trigonometric equations

Solving trigonometric equations involves using both algebraic equation solving skills, along with knowledge of trigonometric functions. Additionally, trigonometric equations usually come with a restriction on the domain which then places a limit on the number of solutions.

Example 1: Solve the following trigonometric equations in the specified domain.

$$
(0.4,0.1)
$$

c) $3 \tan ^{2} \theta-1=0$
$0 \leq \theta<2 \pi$
$3 \tan ^{2} \theta=1$

$$
\tan ^{2} \theta=\frac{1}{3}
$$

$$
\tan \theta= \pm \frac{1}{\sqrt{3}}
$$

(Give exact values)
special triangle

QI: $\theta=\frac{\pi}{6}$

$$
\text { QB: } \theta=\frac{7 \pi}{6}
$$

Qu: $\theta=\frac{11 \pi}{6}$

Example 2. The General Solution to a Trigonometric Equation Solve the following over the reals.
a) $5 \sin x+1=0$
b) $\tan ^{2} x=1$
c) $2 \cos x \sin x+\cos x=0$
(Give exact values)

