4.3B Warmup

1. Determine the approximate value of use calculator

a) $\tan (8.2)$	-2.7737	b)$\csc \left(-91^{\circ}\right)$ $\sin \left(-91^{\circ}\right)$ $=-.9998$ c) $\cos (-3.14)$ -1.000
	d) $\sec \left(-89^{\circ}\right)$ $=57.3000$ $\cos \left(-89^{\circ}\right)$ $=0.01745$	

2. Determine the exact value of use special triangles.

3. If $P(-0.6,0.8)$ lies on the terminal arm of θ on the unit circle, what is
a) $\cos \theta$
b) $\sin \theta$
c) $\tan \theta$

$$
\cos \theta=-.6
$$

$$
\sin \theta=.8
$$

$$
\tan \theta=-\frac{.8}{.6}=-\frac{8}{6}
$$

Why do you know that $P(-0.6,0.8)$ lies on the unit circle?

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& (-.6)^{2}+(.8)^{2}=1^{2} \quad, \quad .36+.64=1
\end{aligned}
$$

4. Is $\cos \left(\frac{5 \pi}{6}\right)=\cos \left(150^{\circ}\right)$? Explain.
yes. $\frac{5 \pi}{6}$ and 150° are coterminal angles in standard position / same angle.
(1) Find reference angle. - use inverse trig functions on
(2) Find the angle in 4.3 B Finding the angle a positive value
standard position.
Example 1: Determine the measure of all angles that satisfy the given conditions.
a) $\cos \theta=-0.738$
x-cord negative in $Q 2$ and $Q 3102 \pi$ Give answers ${ }^{\circ}$ o the nearest hundredth of a radian.

$$
\begin{aligned}
& \cos \theta_{R}=+.738 \\
& \theta_{R}=\cos ^{-1}(.738) \\
& \theta_{R}=.7407
\end{aligned}
$$

$$
\begin{aligned}
\text { Q2: } \theta & =\pi-.7407 \\
\theta & =2.4009 \\
\text { Q3: } \theta & =\pi+.7407 \\
\theta & =3.8823
\end{aligned}
$$

Which quadrants will the answers be in?

How many answers will there be?
$0 \leq \theta<2 \pi$ covers 1 full rotation.

There are 2 solutions in Q2 and Q3

Which quadrants will the answers be in?
Q1 and Q 2
How many answers will there be?
2 solutions in
1 rotation.

c) $\tan \theta=-\frac{1}{\sqrt{3}}$

Give exact values.
$\tan \theta_{R}=+\frac{1}{\sqrt{3}}$

Q2:

$$
\begin{aligned}
& \theta=180^{\circ}-30^{\circ} \\
& \theta=150^{\circ}
\end{aligned}
$$

$$
\theta_{R}=30^{\circ}
$$

$$
\begin{aligned}
\text { Qu: } \theta & =0^{\circ}-30^{\circ} \\
\theta & =-30^{\circ}
\end{aligned}
$$

Example 2. The point $Q(5,-12)$ lies on the terminal arm of an angle θ. Determine the exact value of each of the trigonometric ratios and the smallest positive value of θ in radians.

Is the point $Q(5,-12)$ on the unit circle? Explain.
not on unit circle $\quad 5^{2}+(-12)^{2} \neq 1$

$$
\text { radius }=r^{2}=5^{2}+(-12)^{2} \quad r=13
$$

HW p201 \# 10-12, 15, 16, C1,C2

$$
* 20,22 \mathrm{c} 4 .
$$

**Example 3. When you keystroke $\sin ^{-1}\left(\frac{1}{2}\right)$ on your calculator, is your calculator giving you "the" angle whose sine is $\frac{1}{2}$ or "an" angle whose sine is $\frac{1}{2}$?

When you keystroke $\sin ^{-1}\left(-\frac{1}{2}\right)$ on your calculator, what are you asking your calculator to do? Why do you think your calculator gives you the answer it does?

What is $\sin \left(\sin ^{-1}\left(\frac{1}{2}\right)\right)$?
What is $\sin \left(\sin ^{-1}\left(-\frac{1}{2}\right)\right)$?

What is $\sin ^{-1}\left(\sin \left(\frac{\pi}{6}\right)\right)$?
What is $\sin ^{-1}\left(\sin \left(\frac{5 \pi}{6}\right)\right)$?
What is $\sin ^{-1}\left(\sin \left(\frac{11 \pi}{6}\right)\right)$?

