4.3B Warmup

2π

4.

1.	Determine the approximate value of USe	calculator		
	a) tan(8.2) - 2.7737	b) $\csc(-91^{\circ}) = -1.0001$ $\sin(-91^{\circ}) = -9998$		
	c) cos(-3.14)	d) $\sec(-89^{\circ}) = 57.3000$ $\cos(-89^{\circ}) = 0.01745$		
2. Determine the exact value of use special triangles.				
271 = 67	a) $\sin\left(\frac{85\pi}{3}\right) = \sin\left(\frac{13\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right)$	b) $\csc\left(-\frac{7\pi}{6}\right)$ $\sin\left(-\frac{7\pi}{6}\right) = \frac{1}{2}$		
3	$\frac{1}{3} = \frac{13}{2}$	$\left[\operatorname{csc}\left(-\frac{7\pi}{6}\right) \right] = 2$		
Lπ <u>= 4π</u>	c) $\sin\left(\frac{47\pi}{2}\right) = \sin\left(\frac{3\pi}{2}\right)$	d) $\tan\left(\frac{47\pi}{2}\right) = \frac{\sin\theta}{\cos\theta} = \frac{-1}{\partial}$		
2	$\sin\left(\frac{47\pi}{2}\right) = -1$	= undefined		

3. If P(-0.6, 0.8) lies on the terminal arm of θ on the unit circle, what is

a) $\cos \theta$	b) $\sin \theta$	c) $\tan \theta$		
cos⊖=6	$\sin \theta = .8$	$\tan \theta = \frac{.8}{.6} = \frac{.8}{.6}$		
Why do you know that $P(-0.6, 0.8)$ lies on the unit circle? $\chi^2 + \chi^2 = r^2$				
$(6)^2 + (.8)^2 =$	1 ² √ .36 +.64	= /		
Is $\cos\left(\frac{5\pi}{6}\right) = \cos\left(150^{\circ}\right)$? Explain.				
yes. $\frac{5\pi}{6}$ av	nd 150° are cotermina standard position /	l angles in same angle.		

Example 2. The point Q(5,-12) lies on the terminal arm of an angle θ . Determine the exact value of each of the trigonometric ratios and the smallest positive value of θ in radians.

Is the point Q(5,-12) on the unit circle? Explain. not on unit circle $5^2 + (-12)^2 \neq 1$ radius = $\Gamma^2 = 5^2 + (-12)^2$ $\Gamma = 13$ Non unit circle approach $\frac{13}{12} \stackrel{!2}{13} \stackrel{!2}{13} \stackrel{!2}{13} \stackrel{!2}{13} \stackrel{!2}{13} \stackrel{!2}{13} \stackrel{!2}{13} \frac{(5,-12)}{13} \stackrel{!3}{13} \stackrel{!$ Non unit circle approach $\cos \Theta = \frac{5}{13}$ $\sec \Theta = \frac{13}{5}$ $\frac{13}{13} = \frac{5}{5} = \frac{12}{5} = \frac{12}{5} = \frac{12}{5} = \frac{5}{12} = \frac{5}{12}$ (5, -12)finding Θ is the same as 5.1040 H

$$N = p_{201} = \pm 10^{-12}, 15, 16, C1, C.$$

 $+ 20, 22 = C4.$

**Example 3. When you keystroke $\sin^{-1}\left(\frac{1}{2}\right)$ on your calculator, is your calculator giving you "the" angle whose sine is $\frac{1}{2}$ or "an" angle whose sine is $\frac{1}{2}$?

When you keystroke $\sin^{-1}\left(-\frac{1}{2}\right)$ on your calculator, what are you asking your calculator to do? Why do you think your calculator gives you the answer it does?

What is
$$\sin\left(\sin^{-1}\left(\frac{1}{2}\right)\right)$$
?
What is $\sin\left(\sin^{-1}\left(-\frac{1}{2}\right)\right)$?
What is $\sin^{-1}\left(\sin\left(\frac{\pi}{6}\right)\right)$?
What is $\sin^{-1}\left(\sin\left(\frac{5\pi}{6}\right)\right)$?
What is $\sin^{-1}\left(\sin\left(\frac{5\pi}{6}\right)\right)$?