4.2B The Unit Circle - Given the point, finding the angle

The function $P(\theta)=(x, y)$ gives the coordinates of the point on the unit circle associated with a nagle of rotation (or arclength) of θ. Thus $P\left(-\frac{3 \pi}{4}\right)=\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ relates the point $\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ with the angle (or arclength) of $-\frac{3 \pi}{4}$.

Example 1. Identify a measure for the central angle θ in the interval $0 \leq \theta<2 \pi$ such that $P(\theta)$ is the given point:

$$
\begin{aligned}
& \text { a) }\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right) \\
& \text { Draw the unit circle and label the diagram in an } \\
& \text { appropriate way. Use your knowledge of special } \\
& \text { triangles to determine the value of } \theta \text {. } \\
& \theta=180^{\circ}+30^{\circ} \\
& =210^{\circ}
\end{aligned}
$$

This question is really asking what value of θ makes $P(\theta)=\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$? Or what rotation angle brings you to the point $\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$?

Example 2. Determine all values for θ in the interval $-\pi \leq \theta<5 \pi$ such that $P(\theta)=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$

or $\theta=\pi-\frac{\pi}{3}$
$=\frac{2 \pi}{3} 4$

Example 3. What is the relationship between the points that are $\frac{1}{4}$ rotation apart on the unit circle?
Start with the point $P\left(\frac{\pi}{6}\right)=\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$. Move $\frac{1}{4}$ rotation from this point. Determine this new point and its coordinates. Repeat this process by moving $-\frac{1}{4}$ rotation from the original point.

Repeat these steps with the point $P\left(\frac{\pi}{3}\right)=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$

