4.2B The Unit Circle – Given the point, finding the angle

The function $P(\theta) = (x, y)$ gives the coordinates of the point on the unit circle associated with a nagle of rotation (or arclength) of θ . Thus $P\left(-\frac{3\pi}{4}\right) = \left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ relates the point $\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ with the angle (or arclength) of $-\frac{3\pi}{4}$.

Example 1. Identify a measure for the central angle θ in the interval $0 \le \theta < 2\pi$ such that $P(\theta)$ is the given point:

611 or 3 full rotations apart

Example 2. Determine all values for θ in the interval $-\pi \le \theta < 5\pi$ such that $P(\theta) = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ $\Theta = |80 - 60 = |20^{\circ}$ or $\Theta = \pi - \frac{\pi}{3}$ $= \frac{2\pi}{3}$ $\Theta = \frac{2\pi}{3}$, $\frac{14\pi}{3}$ $\Theta = \frac{2\pi}{3}, \frac{8\pi}{3}, \frac{14\pi}{3}$

Example 3. What is the relationship between the points that are $\frac{1}{4}$ rotation apart on the unit circle?

Last class = 4.2A p187 #1-4,10,11 4.2b p187 # 5-7,9,12,13,15 C1,C2.