4.2A The Unit Circle

The unit circle is simply any circle whose radius equals _ _ unit.
For our purposes, we will place the centre of a unit circle at the origin of the Cartesian plane.

To find the equation of the unit circle, we can use Pythagoras Theorem.

$$
x^{2}+y^{2}=1
$$

Example 1.

a) If the radius of the circle was 3 instead of 1 , what would the equation be?

$$
x^{2}+y^{2}=3^{2}
$$

b) If the radius of the circle was r, what would the equation be?

$$
x^{2}+y^{2}=T^{2}
$$

Example 2. Determine the coordinates for all points on the unit circle which meet the stated conditions. In each case draw a diagram.
a) The x-coordinate is $-\frac{3}{4}$

b) The y-coordinate is $-\frac{\sqrt{3}}{2}$ and the point is in quadrant III

$$
\begin{aligned}
& x^{2}+\left(-\frac{\sqrt{3}}{2}\right)^{2}=1 \\
& x^{2}+\frac{3}{4}=1 \\
& x^{2}=\frac{1}{4} \\
& x= \pm \frac{1}{2} \quad x= \pm \sqrt{\frac{1}{4}}
\end{aligned}
$$

$$
\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)
$$

$$
a=r \theta
$$

Arc Length and Angle Measure

$$
a=\theta
$$

We have already seen that the formula $a=\theta r$ can be used to determine the arc length when the central angle is θ (in radians) and the radius is r. In the case of a unit circle, the radius is 1 , and this formula then says $a=\theta(1)$ or more simply $a=\theta$. This means that in a unit circle, a central angle of θ is subtended by an arc with length θ (except that the arc length is measured in length units)

Thus on the unit circle, if the central angle is .63 , then the subtended arc has a length of .63 ; if the central angle is $\frac{\pi}{6}$, then the arc has a length of $\frac{\pi}{6}$ (Note that these statements are only true if the angle is in radians)

Define a function $P(\theta)=(x, y)$ which relates the angle θ (or arclength θ) with the coordinates (x, y) on the unit circle

$P(\theta)=(x, y) \quad$| $P\left(\frac{\pi}{2}\right)$ means to travel an arclength of $\frac{\pi}{2}$ on the unit |
| :--- |
| circle and state the coordinates of the point of |
| intersection of the terminal arm and the circle. |
| Therefore, $P\left(\frac{\pi}{2}\right)=(0,1)$ |

Example 3.

a) On a diagram of a unit circle, show the integral multiples of $\frac{\pi}{6}$ in the interval $0 \leq \theta \leq 2 \pi$

b) What are the coordinates of each point $P(\theta)$?

| To do this we need to recall properties of a |
| :--- | :--- | :--- |
| $30^{\circ}-60^{\circ}-90^{\circ}$ triangle. Convert this triangle to |
| one with a hypotenuse of length one. |
| $\frac{\sqrt{3}}{2}$ |$<-\sqrt{3}$ (

What patterns do you observe in the completed diagram on the previous page?
all angles with the same reference angle have the same (x, y) but the signs are different

$$
\text { eg } \begin{aligned}
& P\left(\frac{\pi}{6}\right)=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \\
& P\left(\frac{5 \pi}{6}\right)=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \\
& P\left(\frac{7 \pi}{6}\right)=\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right) \\
& P\left(\frac{11 \pi}{6}\right)=\left(+\frac{1}{2},-\frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

Recall also the properties of a $45^{\circ}-45^{0}-90^{\circ}$ triangle.
Convert this triangle to one with a hypotenuse of length one.
mote

$$
\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2}
$$

$$
\begin{aligned}
& \text { neth one. } \\
& \frac{1}{\sqrt{2}}<-1 \\
& \\
& \hline
\end{aligned}
$$

 $\frac{1}{\sqrt{2}}$ can also be written as $\frac{\sqrt{2}}{2}$

4.2B The Unit Circle - Given the point, finding the angle

The function $P(\theta)=(x, y)$ gives the coordinates of the point on the unit circle associated with a nagle of rotation (or arclength) of θ. Thus $P\left(-\frac{3 \pi}{4}\right)=\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ relates the point $\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ with the angle (or arclength) of $-\frac{3 \pi}{4}$.

Example 1. Identify a measure for the central angle θ in the interval $0 \leq \theta<2 \pi$ such that $P(\theta)$ is the given point:

$$
\begin{aligned}
& \text { a) }\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right) \\
& \text { Draw the unit circle and label the diagram in an } \\
& \text { appropriate way. Use your knowledge of special } \\
& \text { triangles to determine the value of } \theta \text {. } \\
& \theta=180^{\circ}+30^{\circ} \\
& =210^{\circ}
\end{aligned}
$$

This question is really asking what value of θ makes $P(\theta)=\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$? Or what rotation angle brings you to the point $\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$?

Example 2. Determine all values for θ in the interval $-\pi \leq \theta<5 \pi$ such that $P(\theta)=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$

or $\theta=\pi-\frac{\pi}{3}$

$$
=\frac{2 \pi}{3}<
$$

Example 3. What is the relationship between the points that are $\frac{1}{4}$ rotation apart on the unit circle?
Start with the point $P\left(\frac{\pi}{6}\right)=\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$. Move $\frac{1}{4}$ rotation from this point. Determine this new point and its coordinates. Repeat this process by moving $-\frac{1}{4}$ rotation from the original point.

Repeat these steps with the point $P\left(\frac{\pi}{3}\right)=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$

