4.1B Coterminal Angles

Recall that an angle θ is in *standard position* in the coordinate plane if the following two requirements are satisfied:

Draw angles of 20° and 380° in standard position. What is different about these two angles? What is the same about these two angles?

What negative angle would share the same terminal arm?

-340°

Coterminal Angles

Coterminal angles are standard position angles that share a common terminal arm. Thus 20° , 380° and -340° are coterminal angles.

1. Determine one negative and one positive angle that is coterminal with each of the following angles:

Every angle in standard position has an infinite number of coterminal angles associated with it. For example, consider the standard position angle $\theta = 135^{\circ}$. How could you quickly determine two positive and two negative angles that are coterminal with θ ?

$$\Theta_{1} = 135^{\circ} + 360^{\circ}$$
 $\Theta_{-1} = 135^{\circ} + -1(360^{\circ})$
 $\Theta_{-2} = 135^{\circ} + -2(360^{\circ})$

In general, we can say that the angles coterminal with 135° are $135^{\circ} \pm (360^{\circ})n$, where *n* is any natural number. We could also express this as $135^{\circ} + (360^{\circ})n$, where *n* is any integer.

Similarly, two positive and two negative angles coterminal with $\theta = \frac{3\pi}{4}$ are

- $\Theta_{1} = \frac{3}{4}\pi + 2\pi \qquad \qquad \Theta_{-1} = \frac{3\pi}{4} + -2\pi$
- $\Theta_2 = \frac{3\pi}{4} + 2(2\pi)$ $\Theta_{-2} = \frac{3\pi}{4} + -2(2\pi)$

In general, the angles coterminal with $\frac{3\pi}{4}$ are $\frac{3\pi}{4} + 2\pi n$, where *n* is any integer.

Generalization:

In general, consider an angle θ in standard position. Coterminal angles of θ will have the form

 $\Theta + n360^{\circ}$

or $\Theta + n2\pi$

where *n* is any integer.

2. For each angle in the table below, draw the angle, state the quadrant it terminates in, give a positive and negative coterminal angle and state the reference angle.

reference	e : size of	angle mad	e to nearest	r x-axis
Angle	Drawing	Quadrant	Two coterninal angles	Reference angle
$\theta = 45^{\circ}$	- DR	•	405° -315°	45°
$\theta = \frac{5\pi}{6}$		2	Π-Π 	<u>π</u> 6

	$\theta = -225^{\circ}$	⊖r <u>7</u> -225°	2	135° - 585°	Or=45°
	$\theta = \frac{5\pi}{3}$	- Cor Or	4	트에 트	$\Theta_R = \frac{\pi}{3}$
	$\theta = -240^{\circ}$	Og -240	2	120° -600°	0r= 60°
	$\theta = -\frac{2\pi}{3}$	OR -211	3	보고 8 년 1 월 1 년 1 월 1 월 1 월 1 월 1 월 1 월 1 월 1 월 1 월 1 월	$\Theta_{R} = \frac{\Pi}{3}$
کھل_	$\theta=1$		١	I +2π I - 2π	OR=1

- 3. Find the smallest positive angle coterminal with
- a) -5000° + $14(360^{\circ})$ - 5000 + 5040 40° b) $\frac{88\pi}{3}$ $\frac{88}{3}\pi - 14(2\pi)$ $\frac{88\pi}{3} - 28\pi}$ $\frac{88\pi}{3} - 84\pi}$ $\frac{84\pi}{3} - 84\pi}$ $\frac{84\pi}{3} - \frac{84\pi}{3} - \frac{84\pi}{3}$

4. Do the expressions $\theta = \frac{5\pi}{6} + 2\pi n$, $n \in I$ and $\theta = -\frac{19\pi}{6} + 2\pi n$, $n \in I$ represent the same set of angles? Explain. "ave these corected?"