4.1B Coterminal Angles

Recall that an angle θ is in standard position in the coordinate plane if the following two requirements are satisfied:
a) the vertex of the angle is at the origin
b) the initial arm is the positive x-axis

Also by convention, a counter clockwise rotation is a positive angle and a clockwise rotation is a negative angle.

Draw angles of 20° and 380° in standard position. What is different about these two angles? What is the same about these two angles?

same: final position different: 380° had a full rotation
counter clockwise first.
What negative angle would share the same terminal arm?

Coterminal Angles

-340°
Coterminal angles are standard position angles that share a common terminal arm. Thus 20°, 380° and -340° are coterminal angles.

1. Determine one negative and one positive angle that is coterminal with each of the following angles:

Every angle in standard position has an infinite number of coterminal angles associated with it. For example, consider the standard position angle $\theta=135^{\circ}$. How could you quickly determine two positive and two negative angles that are coterminal with θ ?

$$
\begin{array}{ll}
\theta_{1}=135^{\circ}+360^{\circ} & \theta_{-1}=135^{\circ}+-1\left(360^{\circ}\right) \\
\theta_{2}=135^{\circ}+2\left(360^{\circ}\right) & \theta_{-2}=135^{\circ}+-2\left(360^{\circ}\right)
\end{array}
$$

In general, we can say that the angles coterminal with 135° are $135^{\circ} \pm\left(360^{\circ}\right) n$, where n is any natural number. We could also express this as $135^{\circ}+\left(360^{\circ}\right) n$, where n is any integer.

Similarly, two positive and two negative angles coterminal with $\theta=\frac{3 \pi}{4}$ are

$$
\begin{array}{ll}
\theta_{1}=\frac{3 \pi}{4}+2 \pi & \theta_{-1}=\frac{3 \pi}{4}+-2 \pi \\
\theta_{2}=\frac{3 \pi}{4}+2(2 \pi) & \theta_{-2}=\frac{3 \pi}{4}+-2(2 \pi)
\end{array}
$$

In general, the angles coterminal with $\frac{3 \pi}{4}$ are $\frac{3 \pi}{4}+2 \pi n$, where n is any integer.

Generalization:
In general, consider an angle θ in standard position. Coterminal angles of θ will have the form
 or \square where n is any integer.
2. For each angle in the table below, draw the angle, state the quadrant it terminates in, give a positive and negative coterminal angle and state the reference angle.

3. Find the smallest positive angle coterminal with
a) $-5000^{\circ}+14\left(360^{\circ}\right)$
b) $\frac{88 \pi}{3}$

$$
40^{\circ}
$$

$$
\begin{aligned}
& \frac{88}{3} \pi-14(2 \pi) \\
& \frac{88 \pi}{3}-28 \pi \\
& \frac{88 \pi}{3}-\frac{84 \pi}{3}=\frac{4 \pi}{3}
\end{aligned}
$$

4. Do the expressions $\theta=\frac{5 \pi}{6}+2 \pi n, n \in I$ and $\theta=-\frac{19 \pi}{6}+2 \pi n, n \in I$ represent the same set of angles? Explain. "are these coterminal?

$$
\begin{aligned}
\frac{5 \pi}{6}-2 \pi & =-\frac{7 \pi}{6} \\
-\frac{7 \pi}{6}-2 \pi & =-\frac{19 \pi}{6}
\end{aligned}
$$

$\frac{5 \pi}{6}$ and $\frac{-19 \pi}{6}$ are
coterminal.
p175 \#7-9, 11, 18-20, 24, 26, 27c5

