Radian Measure
Developing Radian Measure
1. What is the circumference of a circle with radius ‘r’ ? C = 2.M.v

2. How many degrees are there in a complete rotation?
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What can you conclude about the relationship between the radius and the number of times the radius can

wrap around the circle? i} al_wo%a. tokes €.28 mdmsea ('J.,T[) e
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Graphically, the radius will wrap around the circle as follows. (The radiusisr.)

e OMC a"“’“{j—s If the radius varies in size, will the corresponding
central angle measurements change or stay the same?
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Radians are related to the radius. According to the
diagram which follows, we can see the relationship
between the radius, arc length, and 1 radian.
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An arc of length | of a circle of radius l subtends an
angle of | radian.
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In other words, 1 radian is the measure of a central angle that is subtended by an arc equal in length to the
- , oxe \e
dius. ' ¥ mdians = ng\*r\
Tod\us .




Developing the Relationship Between Radians and Degrees
. . °
1. How many degrees does it take to “go around a circle?” 560
2. How many times does the radius “go around a circle?” 2 1y
Both measurements can take us completely around the circle. Complete the following relationships:

Going around the circle in degrees = Going around the circle in radians
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ting Radians to Degrees Converting Degrees to Radia

If 21t radians
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In general,
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Express the following in degrees and radians:

Degrees Radians
a) A half rotation 186° T
b) Two complete rotations 16 41T
¢) A quarter rotation aQe Y
d) One third of a rotation 120 2%/3
e) One sixth of a rotation ey TF/3

Note: Any angle measurement given without a unit is assumed to be in radians.
E.g. 0=2 means 6 =2 radians .
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Convert each of the following to radians or degrees.
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Finding arc length

Write the proportion by following the diagram and filling in the blanks.
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Note: The angle [ is measured in radians.

arc length _ central angle measure
total circumference total angle measure of 1 rotation
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By solving for ‘a’ in the relationship, the equation for calculating the arc length is:

a= @ r (where the angle 6 is in radians)




If we set up the same relationship but with the central angle in degrees, we get:

arc length _ central angle measure
total circumference total angle measure of 1 rotation
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Note how much simpler the arc length formula is if we use radian measure for the central angle.

(where the angle @ is in degrees)

Example 1:

Determine the arc length in a circle df radius 10 cm)if:

(a) the central angle is 5 radians = re
= 16w (5)
A= 50om.

b) the central angle is 25°.

a= 200 27 (10) (257)
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Example 2: = 4.3 Cm

Determine the central angle (in radians) subtended by an arc of length 3 cm in a circle of radius 10cm
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