Example 3. Determine the equation of a cubic function with zeros of —2, 3 and 5 and with a y-intercept of

-30.

Example 4. A quartic function has zeros of 2 (multiplicity of two), —1and —6. If the function passes

through the point (1,—28) , What must its y-intercept be?
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3. Below is the graph of y =.2x* —2x* —x+1
e) A quarticequation could have 3 roots.
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Give the domain and range of the function. Use
your graphing calculator if necessary.

3.4B Equations and Graphs of Polynomial Functions
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The function y = x’is transformed to y = —2(£(x+1)) —1‘1
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Complete the table of values to show what happens to each point for each transformation. leﬂ 1
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Sketch the graph of L I
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Example 2. A rectangular block measures 5 cm by 6 cm by 7 cm. You want to reduce the volume by
removing the same amount from each edge. How much must be removed from each edge to produce a block
with a volume of 60 cm?* ? ()

a) If x represents the amount removed from each edge, what will the new dimensions of the block be?
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b) What function could be used to represent the vblume of the new block7 What would the domain and

range of this function be? 2.0
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¢) How much should be removed from each edge? Determine the answer graphically and algebraically.
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