Example 3. Determine the equation of a cubic function with zeros of $-2,3$ and 5 and with a y-intercept of -30.

Example 4. A quartic function has zeros of 2 (multiplicity of two), -1 and -6 . If the function passes through the point $(1,-28)$, what must its y-intercept be?

Warmup 3.4B

1. What could the degree of the following polynomial function be? odd

2. Determine the zeros of $y=3 x^{3}+5 x^{2}-16 x-28$ by factoring $P(-1)=-10 \leftarrow$ not a factor $p(-2)=0 \quad x+2$ is a factor

-2	3 5 -16 -28 -6 +2	28		
	3	-1	-14	0

$$
\underbrace{(x+2)\left(3 x^{2}-x-14\right)}_{\sqrt{1}(3 x-7)\left(\frac{3 x+6)}{3}\right)}=y
$$

4. Sketch a polynomial function with

- degree 4
- zeros of -2 and 3 , zero of 5 with multiplicity of 2
- a negative leading coefficient
positive
leading coefficient.

5. True or false
a) The degree of a polynomial indicates the number of roots the equation has. False, it indicates the maximum.
b) The range of all polynomial functions is the Reals. F: domain is all reals.
F: even degrees have an overall max
c) A polynomial equation with an odd degree has at least one root. or min
d) An even degree polynomial with a positive leading coefficient has an overall maximum. F, it has an overall minimum
6. Below is the graph of $y=.2 x^{4}-2 x^{2}-x+1$

e) A quartic equation could have 3 roots.

domain:
range: $y \geq-6.3 \quad[-6.3, \infty)$

Give the domain and range of the function. Use your graphing calculator if necessary.
3.4B Equations and Graphs of Polynomial Functions
horizontal stretch by 2
Example 1: Sketching Polynomial Functions (sing Transformations
vertical stretch by 2
The function $y=x^{3}$ is transformed to $y=-2\left(\frac{1}{2}(x+1)\right)^{3}-1$ 驭

$$
\text { v. reflection is down } 1
$$

Complete the table of values to show what happens to each point for each transformation. left 1

$y=x^{3}$	$y=\left(\frac{1}{2} x\right)^{3}$	$y=-2\left(\frac{1}{2} x\right)^{3}$	$y=-2\left(\frac{1}{2}(x+1)\right)^{3}-1$
$(-2,-8)$	$(-4,-8)$	$(-4,16)$	$(-5,15)$
$(-1,-1)$	$(-2,-1)$	$(-2,2)$	$(-3,1)$
$(0,0)$	$(0,0)$	$(0,0)$	$(-1,-1)$
$(1,1)$	$(2,1)$	$(2,-2)$	$(1,-3)$
$(2,8)$	$(4,8)$	$(4,-16)$	$(3,-17)$

Sketch the graph of $y=-2\left(\frac{1}{2}(x+1)\right)^{3}-1$

Example 2. A rectangular block measures 5 cm by 6 cm by 7 cm . You want to reduce the volume by removing the same amount from each edge. How much must be removed from each edge to produce a block with a volume of $60 \mathrm{~cm}^{2}$?
a) If x represents the amount removed from each edge, what will the new dimensions of the block be?

$$
\underbrace{(5-x)(6-x)(7-x)}_{y}=\underbrace{60}_{y 2}
$$

b) What function could be used to represent the volume of the new block? What would the domain and range of this function be?
$0<x<5 \leftarrow$ window settings.
$0<v<210$

$$
(5-x)(6-x)(7-x)=60
$$

210

0

c) How much should be removed from each edge? Determine the answer graphically and algebraically.
when $x=2, v=60$ so 2 cm should be removed.

$$
\begin{aligned}
& 210-107 x+18 x^{2}-x^{3}=60 \\
& 150-107 x+18 x^{2}-x^{3}=0 \\
& 0=x^{3}-18 x^{2}+107 x-150 \\
& P(2)=0 \text { so } \quad x-2 \text { is a factor and }
\end{aligned}
$$

