Warmup 3.3b

1. Factor the following: a) x^2-5x-6 (X-6)(X+1) b) $3x^2-5x-2$ (X-2)(3X+1)

c)
$$x^{3}-9x$$

 $x(x^{2}-9)$
 $x(x+3)(x-3)$
d) $x^{4}-81$
 $(x^{2}+9)(x^{2}-9)$
 $(x^{2}+9)(x+3)(x-3)$

3. How could you use the results of #2 to help you factor $p(x) = x^3 - x^2 - 14x + 24$?

$$(x-3)(x-2)(x+4) = x^{3}-x^{2}-14x+24$$

3.3b The Integral Zero Theorem

We now have an easy way of determining whether a binomial is a factor of a given polynomial. The question now is: "Which binomials should we test" or "Which values should we test to see if p(a) = 0"?

It is helpful to notice that if $p(x) = x^3 - x^2 - 14x + 24$ and p(a) = 0, then remainder.

$$a^{3} - a^{2} - 14a + 24 = 0$$
$$a^{3} - a^{2} - 14a = -24$$
$$a(a^{2} - a - 14) = -24$$

This means that *a* must be a factor of 24, and thus means that the only values for *a* that must be tested are ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 8 , ± 12 , ± 24

Integral Zero Theorem

If x-a is a factor of a polynomial with integral coefficients, then *a* must be a factor of the <u>constant</u> <u>term</u> of the polynomial.

The Factor Property allows us to significantly narrow our search for **possible** factors. It means that the only factors involving integers we need to consider are the ones using factors of the constant term.

Example 1: Factor completely: $x^3 + 8x^2 + 11x - 20$

The factors of 20: ± 1 , ± 2 , ± 4 , ± 5 , ± 10 , ± 20

p(-1) = -24 $\therefore x+1$ is not a factor of $x^3 + 8x^2 + 11x - 20$

p(1) = $\therefore x-1$ 15 a factor of $x^3 + 8x^2 + 11x - 20$

At this point, you could now test other factors or you could use synthetic division to help find the other factors. x - 1

$$(+) \begin{bmatrix} 1 & 8 & 11 & -20 \\ 1 & 1 & 9 & 20 \\ 1 & 9 & 20 & 0 \end{bmatrix}$$

$$(x-1)(x^{2}+9x+20)$$

 $(x-1)(x+4)(x+5)$

Example 2: Factor completely: $3x^3 - 10x^2 - 11x + 42$

$$\frac{x + p(x)}{-2 + 0} (x+2)$$
3 0 (x-3)
(x+2)(x-3)(3x -7)

Graph the function $f(x) = 3x^3 - 10x^2 - 11x + 42$. How could you use the factors of the polynomial to help determine the zeros of the function?

Example 3: Factor completely: $x^4 - 2x^3 - 3x^2 + 8x - 4$

The factors to test are: $\underline{\pm 1}, \underline{\pm 2}, \underline{\pm 4}$ Since p(1)=0, we can say that $\underline{(\times -1)}$ is a factor.

Using synthetic division, we can obtain another factor.

X-1						
	+1	1	-2	- 3	8	-4
		11	۱.	-1	-4	4
		·γ_	- 1	-4	4	D

$$(x-1)(x^{3}-x^{2}-4x+4)$$

The other factor is $x^3 - x^2 - 4x + 4$. This can now be further factored using the Factor Theorem again or by trying to use Factoring by Grouping.

Optional: If you were going to extend your search for factors to include rationals, you could use the following:

p133 #5,8,11,13, c2, c3 *15,16.