Warmup 3.3b

1. Factor the following:
a)

$$
(x-6)(x+1)
$$

$$
\begin{aligned}
& \text { b) } \\
& \left(x-2 x^{2}-5 x-2\right. \\
& (x-2)(3 x+1)
\end{aligned}
$$

c)

$$
\begin{array}{ll}
x^{3}-9 x & \text { d) } \\
x\left(x^{4}-81\right. \\
x(x+9) & \left(x^{2}+9\right)\left(x^{2}-9\right) \\
x-3) & \left(x^{2}+9\right)(x+3)(x-3)
\end{array}
$$

2. Which of the following are factors of $p(x)=x^{3}-x^{2}-14 x+24$
a) $x-1$
b) $x+1$
c) $x-2$
d) $x+2$
(e) $x-3$
f) $x+3$

| $x$ | $P(x)$ |
| :---: | :---: |
| -4 | 0 |
| -3 | 30 |
| 2 | 0 |
| 3 | 0 |
| 4 | 16 |

3. How could you use the results of $\# 2$ to help you factor $p(x)=x^{3}-x^{2}-14 x+24$ ?

$$
(x-3)(x-2)(x+4)=x^{3}-x^{2}-14 x+24
$$

## 3.3b The Integral Zero Theorem

We now have an easy way of determining whether a binomial is a factor of a given polynomial. The question now is: "Which binomials should we test" or "Which values should we test to see if $p(a)=0$ "?

$$
x-a \text { is a factor }
$$

It is helpful to notice that if $p(x)=x^{3}-x^{2}-14 x+24$ and $p(a)=0$, then

$$
\begin{aligned}
a^{3}-a^{2}-14 a+24 & =0 \\
a^{3}-a^{2}-14 a & =-24 \\
a\left(a^{2}-a-14\right) & =-24
\end{aligned}
$$

This means that $a$ must be a factor of 24, and thus means that the only values for $a$ that must be tested are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$

## Integral Zero Theorem

If $x-a$ is a factor of a polynomial with integral coefficients, then $a$ must be a factor of the constant term of the polynomial.

The Factor Property allows us to significantly narrow our search for possible factors. It means that the only factors involving integers we need to consider are the ones using factors of the constant term.

Example 1: Factor completely: $x^{3}+8 x^{2}+11 x-20$
The factors of $20: \pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20$
$p(-1)=-24 \quad \therefore x+1$ is not a factor of $x^{3}+8 x^{2}+11 x-20$
$p(1)=0 \quad \therefore x-1$ is a factor of $x^{3}+8 x^{2}+11 x-20$

At this point, you could now test other factors or you could use synthetic division to help find the other factors.

$$
x-1
$$



$$
(x-1)\left(x^{2}+9 x+20\right)
$$

$1 \quad 1 \quad 9 \quad 20 \quad(x-1)(x+4)(x+5)$

Example 2: Factor completely: $\frac{\frac{1}{3}}{3}-10 x^{2}-11 x+42$

$$
\begin{aligned}
& x + 2 \longdiv { 3 } \begin{array} { c c c c } 
{ } \\
{ - 2 } & { - 1 0 } & { - 1 1 } & { 4 2 } \\
{ \vdots } & { - 6 } & { 3 2 } & { - 4 2 } \\
{ 3 } & { - 1 6 } & { 2 1 } & { 0 } \\
{ 6 3 } & { } \\
{ ( x + 2 ) ( 3 x ^ { 2 } - 1 6 x + 2 1 ) } \\
{ ( x + 2 ) ( \underbrace { 3 x ^ { 2 } - 9 x } - \underline { - 7 x + 2 1 } ) } \\
{ ( x + 2 ) [ \begin{array} { l l } 
{ 3 x ( x - 3 ) } & { - 7 ( x - 3 ) }
\end{array} ] } \\
{ ( x + 2 ) ( x - 3 ) ( 3 x - 7 ) }
\end{array}
\end{aligned}
$$



$$
(x+2)(x-3)(3 x-7)
$$

Graph the function $f(x)=3 x^{3}-10 x^{2}-11 x+42$. How could you use the factors of the polynomial to help determine the zeros of the function?


$$
\begin{array}{r}
(x+2)(x-3)(3 x-7) \\
\left.\begin{array}{l}
\downarrow \\
x=-2 \\
x=3
\end{array} \right\rvert\, \\
3 x-7=0 \\
3 x=7 \\
x=2 . \overline{3}
\end{array}
$$

Example 3: Factor completely: $x^{4}-2 x^{3}-3 x^{2}+8 x-4$
The factors to test are: $\pm 1, \pm 2, \pm 4$
Since $p(1)=0$, we can say that $\quad(x-1) \quad$ is a factor.
Using synthetic division, we can obtain another factor.


$$
(x-1)\left(x^{3}-x^{2}-4 x+4\right)
$$

The other factor is $x^{3}-x^{2}-4 x+4$. This can now be further factored using the Factor Theorem again or by trying to use Factoring by Grouping.


Optional: If you were going to extend your search for factors to include rationals, you could use the following:

Rational Zero Theorem: If $a x+b, c x+d$ and $e x+f$ were factors of the cubic polynomial $p(x)=m x^{3}+n x^{2}+p x+q$, then $p(x)=(a x+b)(c x+d)(e x+f)$. This means that $a, c, e$ must be factors of $\qquad$ and $b, d, f$ must be factors of
factors of the leading term and look also at substituting $\frac{ \pm \text { factors of constant }}{\text { factors of leading coeff }}$

$$
p 133 \# 5,8,11,13, C 2, C 3 \quad \pm 15,16 \text {. }
$$

