3.1 Characteristics of Polynomial Functions

Investigating the graphs of polynomial functions.
For each of the following functions, state the
i) degree of the function (the greatest power in the function)
ii) end behaviour (the behaviour of the function as $|x|$ becomes very large)
iii) y - intercept and the constant term
iv) \quad sign of the leading coefficient \leftarrow
v) number of x-intercepts

* leading coefficient is
on the term with the
vi) number of maximums and minimums (peaks/valleys)
vii) domain and range (this may requiring graphing the function on your calculator highest power

Note also any similarities and differences between the graphs within each group.
Q :

$$
\begin{aligned}
\text { Similarities/differences - all } & \text { linear functions have } \\
& \text { - no max or min } \\
& \text { - domain }=\mathbb{R} \\
& \text { - range }=\mathbb{R}
\end{aligned}
$$

- have one x-int
- terminate in quadrants 1,3 or 2,4 based on the sign of the leading coefficient

Quadratic Functions

Similarities/differences exactly $1 \mathrm{max} / \mathrm{min}$; terminate $Q 1 / Q 2$ or $Q 3 / Q 4$ -Hint is the constant term depending on sign

Cubic Functions

Similarities/differences
\qquad

Similarities/differences

Quintic Functions
Degree 5

Similarities/differences

What similarities are there in the graphs of polynomials with an odd degree?

- end behaviour based on leading coefficient.

QI /QU
or

$$
\begin{aligned}
& \text { domain }=\mathbb{R} \\
& \text { range }=\mathbb{R}
\end{aligned}
$$

What similarities are there in the graphs of polynomials with an even degree?
end behaviour based on leading coefficient

$$
\text { domain: } \mathbb{R}
$$

$$
\text { range : varies, but is never } \mathbb{R}
$$

Definition: A polynomial function of degree n is any function of the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{1} x+a_{0}
$$

where

- n is a whole number \rightarrow degree
- x is the variable \rightarrow have whole number exponents
- $a_{n}, a_{n-1}, a_{n-2}, \ldots a_{1}, a_{0}$ are real numbers. a_{n} is called the leading coefficient. ap is constant term

1. Identify which of the following are polynomial functions. Justify your answers.

Function	Polynomial?	Justification	
$f(x)=2\|x\|-3$	no	graph is pointy ; cart have abs. value	
$f(x)=5^{x}+x^{2}$	no	5^{x} has a variable exponent	
$f(x)=3 x^{4}-\sqrt{2} x^{3}+.7 x^{2}-x+1059$	yes	coefficients are all real	
$f(x)=\sqrt{x}+3$	no	$\sqrt{x}=x^{1 / 2}$	
$f(x)=-\frac{4}{7} x^{5}+x^{4}-\pi x^{3}+\sqrt{8}$	yes	coefficients can be irrational.	

Characteristics of Polynomial Functions
The graph of any polynomial function is a smooth, continuous curve. The domain of all polynomial functions is all reals . The y-intercept is the \qquad constant term . The maximum number of x-intercepts is determined by the degree of the polynomial. The greatest number of maxima and minima is one less than the degree. The end behaviour of the graph is determined by the whether the degree is odd or even, and also by the sign of the leading coefficient. The orientation of the graph is determined by the \qquad sign of the
\qquad coefficient.

$$
\begin{aligned}
& f(x)=x^{4} \leftarrow \text { maximum of } 4 \text { solutions } \\
& f(x)=x^{3} \leftarrow 3 x \text {-int } \Rightarrow 3 \text { solutions }
\end{aligned}
$$

Odd Degree

Positive leading coefficient

Negative leading coefficient

Behaves like $y=-x$

Must have at least one x-intercept, with a maximum of n-intercepts. The function does not have an overall maximum or minimum. Domain and the range is the $\{\operatorname{Reals}\}$.

Even Degree

Positive leading coefficient

Behaves like $y=x^{2}$

Negative leading coefficient

Behaves like $y=-x^{2}$

May have between zero and $n x$-intercepts. The function must have either an overall maximum or minimum. Domain is the $\{\operatorname{Reals}\}$ and the range is determined by the maximum or minimum value.
2. What might you expect the degree of the following function to be? What would you expect the sign of the leading coefficient to be?

3. Predict what you would expect the graph of $y=-2 x^{6}+3 x^{5}-7 x^{3}+x-9$ to probably look like. 6 maximin degree could be 7
positive or higher

30
4. An open box is to ba ce made from a piece of paper by cutting equal comers from each of the corners. The dimensions of the paper are 20 cm by 30 cm . If x represents the length of the square, in centimetres, then the volume can be represented with the function $V(x)=4 x^{3}-100 x^{3}+600 x$. Make a sketch of what this function will look like, and then graph using your calculator. What restrictions are there on the domain of this function?

$$
\begin{aligned}
& x_{\text {min }}=0 \\
& x_{\text {max }}=30 \\
& y_{\text {min }}=0 \\
& y_{\text {max }}=1500
\end{aligned}
$$

$$
\text { domain: } 0 \leq x \leq 10
$$

because 1 can only fit 210 cm squares along a 20 cm
of piece

