## PC12 2.2 Warm-Up

Graph each of the following. State the domain and range.


### 2.2 Square Root of a Function

The function $y=\sqrt{f(x)}$ is the square root of the function $y=f(x)$ for the values of $f(x) \geq 0$. We can see the difference between the two functions by looking at how we would calculate the y values for the following related functions:

- For $y=2 x-3$, we would multiply x by 2 and subtract 3 to arrive at y .
- For $y=\sqrt{2 x-3}$, we would multiply x by 2 , subtract 3 , then take the square root to arrive at y .

The only difference between the two sets of operations is the final step of taking the square root in the second equation. If we look at a table of values for the two functions, we can see that the y values for $y=\sqrt{2 x-3}$ are simply the square roots of the y values for $y=2 x-3$.

| $x$ | $y=2 x-3$ | $y=\sqrt{2 x-3}$ <br> $n p$. cannot $\sqrt{\text { negative }}$ |
| :---: | :---: | :---: |
| 0 | 1 | 1 |
| 2 | 9 | 3 |
| 6 | 25 | 5 |
| 14 | 49 | 7 |
| 26 |  |  |

Using the information above, determine the relative locations for $y=\sqrt{f(x)}$ in each given interval of $y=f(x)$.

| Value of <br> $f(x)$ | $f(x)<0$ | $f(x)=0$ | $0<f(x)<1$ | $f(x)=1$ | $f(x)>1$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Relative <br> location of <br> graph of <br> $y=\sqrt{f(x)}$ | notpossible | $\sqrt{f(x)}=0$ <br> invariant <br> point | $f(x)>f(x)$ | $\sqrt{f(x)}=1$ |  |

Remember: Invariant points are points that are shared between $y=f(x)$ and $y=\sqrt{f(x)}$. In this case, the invariant points occur when $f(x)=\ldots \quad$ and when $f(x)=1$.

Example 1: Linear Functions and their Square Roots
Given $y=4 x-2$ and $y=\sqrt{4 x-2}$, complete the following:
a) Complete the table of values for both functions.

| x | $y=4 x-2$ | $y=\sqrt{4 x-2}$ |
| :---: | :---: | :---: |
| 0.5 | 0 | 0 |
| 0.75 | 1 | 1 |
| 1 | 4 | 1.4 |
| 1.5 | 6 | 2 |
| 2 | 2.5 |  |

b) Graph $y=4 x-2$ and $y=\sqrt{4 x-2}$ on the same grid. Identify the domain and range of each function and any invariant points.


## Example 2: Quadratic Functions and their Square Roots

Given $y=x^{2}-4$ and $y=\sqrt{x^{2}-4}$, complete the following. (NOTE: $\sqrt{x^{2}-4} \neq x-2!$ !)
a) Complete the table of values for both equations. (NOTE: The square root of a quadratic function CANNOT be found by simply transforming the equation $y=\sqrt{x}$.)

| x | $y=x^{2}-4$ | $y=\sqrt{x^{2}-4}$ |
| :---: | :---: | :---: |
| -4 | 12 | 3.5 |
| -3 | 5 | 2.2 |
| -2 | 0 | 0 |
| -1 | -3 | n.P |
| 0 | -4 | n.P |
| 1 | -3 | $n . P$ |
| 2 | 0 | 0 |
| 3 | 5 | 2.2 |
| 4 | 12 | 3.5 |

b) Graph $y=x^{2}-4$ and $y=\sqrt{x^{2}-4}$ on the same grid. Identify the domain and range of each function and any invariant points.


## Example 3: The Square Roots of Other Quadratics

a) Graph $y=4-x^{2}$ and $y=\sqrt{4-x^{2}}$ on the same grid. Determine the domain and range of each function and state the values of any invariant points.

b) Graph $y=x^{2}+4$ and $y=\sqrt{x^{2}+4}$ on the same grid. Determine the domain and range of each function and state the values of any invariant points.


Example 4: Graph $y=\sqrt{x^{2}}$. Give its domain and range.


What other function has the same graph as this? $\quad y=\sqrt{x^{2}}$ is same as $y=|x|$

Does that mean that these are equivalent functions? Explain.
These appear to be equivalent. Transforming each function the same way keeps them Are the graphs of $y=(\sqrt{x})^{2}$ and $y=\sqrt{x^{2}}$ the same? Explain.
no

$$
y=\sqrt{x} \text { has a restricted domain } x \geq 0 \text {, so it }
$$ is only half of the graph.

Note: All of the transformations studied in chapter 1 were when the function was operating on a linear function (ie. We compared the graphs of $y=f(x)$ with the graph of $y=a f($ linear function $)+d$ or $y=a f(b x+c)+d)$ ) We have now looked at what happens when we compare the graph of $y=\sqrt{x}$ with $y=\sqrt{\text { quadratic function }}$. This requires a completely different analysis, and cannot be in terms of translations, reflections or stretches.

