Radical Functions and Transformations
Draw the graph of $y=\sqrt{x}$:

Domain: $\quad x \geq 0$
Range: $\quad y \geq 0$

Recall what each value in the equation $y=-3(x+2)^{2}-5$ does to the graph of $y=x^{2}$ vertical stretched by factor of 3 and reflected

$$
\text { left } 2 \text { units horizontal. }
$$

then down 5
Radical functions follow the form $y=a \sqrt{b(x-h)}+k$. Each value performs the following transformations on the standard graph of $y=\sqrt{x}$:
a: vertical stretch by a factor of a \quad includes a reflection
b: horizontal stretch by a factor of $\left.\frac{1}{b}\right\}$ if $a<0$ or $b<0$
h : h. translation " h " units right. eg $h=2 \rightarrow x-2$
k: v. translation " k " units up.

Using your knowledge of $y=\sqrt{x}$, sketch a graph of the following square root functions. State
the domain of the function.
\sqrt{x}
$\rightleftharpoons u p 3$
$y=\sqrt{x-2}$

$$
y=2 \sqrt{x+3}
$$

translation 5 night
then h. stretch $\frac{1}{2}$ $y=\sqrt{2 x-5}$

Examples:
right 5 down 2

$$
y=-\sqrt{x}-2
$$

$y=-\sqrt{3 x-5}+2$ reflection
 $(1,1) \longrightarrow(2,1)$ $(4,2) \longrightarrow(3,0)$

1. Using the given key points from the graph $y=\sqrt{x}$, map the new points for each given transformation.

2. Apply mapping notation to the point ($x . y$) to determine a general mapping notation for the transformed function.

Transformation of $y=\sqrt{x}$	Mapping
Horizontal stretch by a factor of $\frac{1}{3}$	$(x, y) \rightarrow\left(\frac{x}{3}, y\right)$
Reflection in the y-axis	$(x, y) \longrightarrow(-x, y)$
Vertical translation of 5 units down	$(x, y) \longrightarrow(x, y-5)$

3. Graph each of the equations below. Describe what is special about the graphs.
v. stretch by fuctor of 2

$$
y=2 \sqrt[\downarrow]{x}
$$

$$
y=\sqrt{4 x}
$$

P $72 \# 2-6,10-14,16 * 19,20$

