1. Using Newton's Method, determine a third approximation to a root of $x^{3}-3 x^{2}+4.1=0$ if the initial approximation is $x=2.1 . \quad X_{1}=2.1$

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=1.8920635
$$

$$
\begin{aligned}
& f(x)=x^{3}-3 x^{2}+4-1 \\
& f^{\prime}(x)=3 x^{2}-6 x
\end{aligned}
$$

$$
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}=2.110278
$$

2. For the function $y=x^{3}$, find the points on $[0,3]$ which satisfy the Mean value Theorem.
(1) find overall slope
(2)

$$
m_{\text {sec }}=\frac{f(3)-f(0)}{3-0}=\frac{27-0}{3-0}=9
$$

$$
\begin{array}{lr}
\text { set } m_{\text {sec }}=y^{\prime} & 3 x=\sqrt{3} \\
9=3 x^{2} \\
\begin{array}{lr}
x^{2}=3 \\
x= \pm \sqrt{3}
\end{array} & y\left(\sqrt{3}, \sqrt{3}^{3}\right)
\end{array}
$$

3. Determine the linear approximation to $y=\sqrt[3]{x}$ for x close to 8 . Use the linear approximation to approximate $\sqrt[3]{7.9}$ to three decimal places.
$a=$ easy to figure out number

$$
\begin{aligned}
f(x) & =f^{\prime}(a) \cdot(x-a)+f(a) \\
& =\frac{1}{3}(8)^{-2 / 3} \cdot(7.9-8)+2 \\
& =\frac{1}{12}(-.1)+2 \\
& =1.992
\end{aligned}
$$

$$
y=\sqrt[3]{x}
$$

$$
y^{\prime}=\frac{1}{3}(x)^{-2 / 3}
$$

4. Use differentials to calculate the approximate change in M when r changes from 20 to 19.9 and where $M=\frac{5}{r}$. Determine the actual change in M as well.
actual change
$M=\frac{5}{r}=5 \cdot r^{-1}$
$\frac{d M}{d r}=\frac{-5}{r^{2}}$
5. Find $d y$ if $y=\sin x+x^{3}$
$\frac{d y}{d x}=\cos x+3 x^{2}$
$d y=\left(\cos x+3 x^{2}\right) \cdot d x$
$\left\{\begin{aligned} d M & =\frac{-5}{\Gamma^{2}} \cdot d r \\ & =\frac{-5}{(20)^{2}}(19.9-20) \\ & =0.00125\end{aligned}\right.$
