Review Warmup II

1. A spherical lollipop is licked so that its volume decreases at a rate of $12 \mathrm{~mm}^{3} / \mathrm{min}$. How fast is the radius decreasing when the diameter is 30 mm ?

$$
\begin{array}{rlrl}
V=\frac{4}{3} \pi r^{3} & r & =15 \mathrm{~mm} \\
\frac{d V}{d r}=\frac{4 \pi r^{2}}{1} & \text { want } \begin{aligned}
\frac{d r}{d t} & =\frac{d r}{d V} \cdot \frac{d V}{d t} \\
& =\frac{1}{4 \pi r^{2}} \cdot-\left.12\right|_{r=15} \\
& =\frac{-12}{4 \pi(15)^{2}} \\
& =\frac{-12}{900 \pi} \\
& =-0.004 \mathrm{~mm} / \mathrm{min}
\end{aligned}
\end{array}
$$

2. Find the dimensions of the rectangle with largest area bounded by the x and y axis and the line $2 x+y=10 \quad y=-2 x+10$

$$
\begin{aligned}
A=x(-2 x+10) & \\
A & =-2 x^{2}+10 x
\end{aligned} \quad y=-2(2.5)+10
$$

3. Find the point on the parabola $y=x^{2}$ that is closest to $(-4,0)$.

$$
\begin{aligned}
& d^{2}=\left(x^{2}\right)^{2}+(x+4)^{2} \\
& d^{2}=x^{4}+x^{2}+8 x+16 \\
& 2 d \cdot d^{\prime}=4 x^{3}+2 x+8 \\
& d^{\prime}=\frac{4 x^{3}+2 x+8}{2 d} \\
& d^{\prime}=\frac{2 x^{3}+x+4}{d}=0 \\
& 2 x^{3}+x+4=0 \\
& \text { use graphing calk } \quad x=-1.128
\end{aligned}
$$

4. Water is poured at a rate of $20 \mathrm{~cm}^{3} / \mathrm{s}$ into a conical container (vertex down) with a height that is twice its radius. How fast is the water rising when the depth of water in the container is 10 cm ?

$$
\begin{gathered}
\frac{d V}{d t}=20 \mathrm{~cm}^{3} / \mathrm{s} \\
h=2 r \\
\frac{d h}{d r}=2
\end{gathered}
$$

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2}(2 r) \\
& V=\frac{2 \pi}{3} r^{3} \\
& \frac{d V}{d r}=2 \pi r^{2}
\end{aligned}
$$

$$
\begin{aligned}
& V=\frac{1}{3} \pi\left(\frac{h}{2}\right)^{2} \cdot h \\
& V=\frac{1}{3} \pi \frac{h^{2}}{4} h \\
& V=\frac{\pi}{12} h^{3} \\
& \frac{d V}{d h}=\frac{3 \pi h^{2}}{12}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d h}{d t} & =\frac{d V}{d t} \cdot \frac{d h}{d V} \\
& =20 \cdot \frac{12}{3 \pi(10)^{2}} \\
& =\frac{240}{300 \pi}=\frac{4}{5 \pi}
\end{aligned}
$$

