Unit 4.7 Warmup

1. Given the graph of $y=f^{\prime}(x)$ to the right determine for the function $y=f(x)$
(Assume that the function $y=f(x)$ is a continuous function)
a) where any critical points occur, and whether they are maximum or minimum
b) intervals where $f(x)$ is increasing or decreasing
c) where any inflection points might occur
d) intervals where $f(x)$ is concave up; concave
 down
a) $x=-3$ local min $\searrow 7$
b) increasing $(-3,-1),(0,1),(1,2)$

$$
\begin{array}{ll}
x=-1 & \text { local max } \\
x=0 & \text { local min }
\end{array} \downarrow \rho
$$

c)

$$
x=1
$$

$x=2 \quad$ local max $?$
d) conc up $(-\infty,-2.2)(-.5,1)$ conc down $(-2.1,-.5)(1, \infty)$

when $f^{\prime}(x)=0$ or undefined
3. Must all cubic function have i) a critical point? ii) an inflection point? Explain.
(1)

$$
\begin{aligned}
& y=a x^{3}+b x^{2}+c x+d \\
& y^{\prime}=3 a \cdot x^{2}+2 b x+c
\end{aligned}
$$

 it is possible that y^{\prime} is not $0, \therefore$ this could have. no critical point

Unit 4.7 Warmup II

1. Sketch a graph of a function with the following properties:

$$
\begin{aligned}
& f(x), f^{\prime}(x), f^{\prime \prime}(x) \text { are defined and continuous for all } x \neq 0 \\
& \lim _{x \rightarrow \infty} f(x)=-\infty \quad \lim _{x \rightarrow-\infty} f(x)=2, \lim _{x \rightarrow 0} f(x)=\infty \\
& f(-3)=f(-1)=f(2)=0 \quad f^{\prime}(-2)=f^{\prime}(-4)=f^{\prime}(1)=0
\end{aligned}
$$

$-3,-1,2$ are the only zeros of $f(x) ;-4,-2,1$ are the only zeros of $f^{\prime}(x)$ $f^{\prime \prime}(x)<0$ for all x in $(-5,-3) \cup(1,2) ; f^{\prime \prime}(-5)=f^{\prime \prime}(-3)=f^{\prime \prime}(1)=f^{\prime \prime}(2)=0$ $f^{\prime \prime}(x)>0$ for all x in $(-\infty,-5) \cup(-3,0) \cup(0,1) \cup(2, \infty)$

2. Given the graph of $y=f^{\prime}(x)$, determine intervals where $y=f(x)$ is increasing/decreasing and concave up/concave down. Also determine the x coordinates of any critical points or inflection points.

3. Find any extrema for the function $y=x^{2} e^{\frac{1}{x}}$

