Curve Sketching Review
The graph of f^{\prime} on $[0,5]$ is shown. Use this graph for \#1 and 2 .

1. f has a local minimum at $x=? \quad x=1$

2. It follows from the graph of f^{\prime}, shown at the right, that
a) f is not continuous at $x=a$
b) f is continuous but not differentiable at $x=a$
c) f has a relative maximum at $x=a f^{\prime}$ not chang in sign.
(d) has a point of inflection at $x=a$ not second
(8) none of these

3. A local minimum value of the function $y=\frac{e^{x}}{x}$ is $x=1$

4. Given f^{\prime} as graphed, sketch a possible graph for f possible
extrema y^{\prime}

5. If $f(x)=x e^{x}$, then at $x=0$
(a) f is increasing
b) f is decreasing
c) f has a relative maximum
d) f has a relative minimum
e) f^{\prime} does not exist
$f(0)$ does hot

$$
\begin{aligned}
f^{\prime}(x) & =1 e^{x}+x e^{x} \\
& =\left.e^{x}(x+1)\right|_{x=0} \\
& =e^{0}(0+1)
\end{aligned}
$$

$$
f^{\prime}(\sigma)=1
$$

