PC12 Warm-Up 1.4
Complete the table below and then graph the function $f(x)=2 x+3$

\boldsymbol{x}	\boldsymbol{y}
-3	-3
-2	-1
-1	1
0	3
1	5
2	7
3	9

Now interchange the x and y coordinates for each ordered pair. Plot the points and draw the line passing through these points. We will call this function $g(x)$. Using the table of values, determine the equation of $g(x)$

$$
\begin{aligned}
& f(x) \text { and } g(x) \text { are } \\
& \text { inverses } \\
& \text { you transpose (switch) } \\
& x \text { and } y \text { values. }
\end{aligned}
$$

The line $y=x$ is also graphed on the grid above. What transformation would change the line $y=f(x)$ to the other line, $y=g(x)$

$$
\text { reflection in the line } y=x
$$

1.4 Inverse of a Relation

The inverse of a function is a rule for reversing what the function does, or it is a rule for changing the output of a function back to its input. We can find the inverse of a function or a relation by \qquad x and y in the equation and then solving this equation for y.

Consider the function we've already graphed, $f(x)=2 x+3$. What is the inverse of this function?

$$
\begin{array}{ll}
y=2 x+3 & \text { original } \\
x=2 y+3 & y=\frac{x-3}{2} \text { or } y=\frac{1}{2} x-\frac{3}{2} \\
x-3=2 y &
\end{array}
$$

We can't call this function $f(x)$, since $f(x)=2 x+3$ already, so we'll call this to show the inverse relationship between \qquad $f(x)$ and \qquad $f^{-1}(x)$

The notation $f^{-1}(x)$ is read as the \qquad inverse of $f(x)$ or f inverse of x. Note that this is a different meaning for the superscript - in this situation it does not mean raising to a power of -1 . Put another way, $f^{-1}(x) \neq \frac{1}{f(x)}$.

The inverse can also be denoted using the notation $x=f(y)$
In general, the inverse of a relation can be determined by doing any one of the following:

1. Interchanging the x and y coordinates for each ordered pair.
2. Interchanging x and y in the equation and then solving for y
3. Reflecting the graph of the relation in the line $y=x$

$$
(2,-1) \rightarrow(-1,2)
$$

Example 1. Given the graph of the relation to the right
a) What are the domain and range?

$$
D:[-4,4] \quad R:[-1,3]
$$

b) Graph the inverse on the same grid
c) What are the domain and range of the inverse?
$D:[-1,3]$

$$
R:[-4,4]
$$

d) Is the inverse a function?
in this case, no

e) Are there any invariant points?

$$
\begin{array}{ll}
\text { original } & -4 \leq x \leq 4 \\
\text { inverse } & -4 \leq y \leq 4
\end{array}
$$

Example 2. Graph the inverse of $y=x^{2}$ on the grid to the right.
a) What are the domain and range of the original function and the inverse? inverse original
$D:[-\infty, \infty] \quad R:[0, \infty] \quad D:[0, \infty]$
b) Is the inverse a function?
no
c) What is the equation of the inverse?

$$
\begin{aligned}
& \begin{array}{l}
\text { What is the equation of the inverse? } \\
y=x^{2} \\
x=y^{2}
\end{array} \quad \rightarrow y=\sqrt{x}
\end{aligned} \quad \Rightarrow y= \pm \sqrt{x} \quad \begin{aligned}
& y=-\sqrt{x}
\end{aligned}
$$

Some observations:

1) The domain of a relation is the range of its inverse, and the range of the relation is the domain of its inverse.
2) The inverse of a function is not necessarily a function. In order for the inverse of a function to also be a function, the original function must pass the horizontal line test. This test simply says that if any horizontal line passes through a function in at least 2 points, then the inverse is not a function.
3) The invariant points lie on the line $y=x$
4) The inverse can always be denoted as $x=f(y)$. In the case when the inverse is also a function, then and only then can the inverse be denoted as $y=f^{-1}(x)$
5) To reflect a graph of a relation in the line $y=x$, interchange x and y in the equation.

Restricting the domain

Sometimes when the inverse of a function is not a function, the domain of the original function is restricted so that the inverse is also a function. In the example, what restriction could you place on the domain of the original so that above the inverse is also a function?

What other restriction could you have used in this question?
$x \geq 0$ would graph right half of parabola and
Example 3: the inverse $f^{-1}(x)=\sqrt{x+4}$ The graph on the right is the reflection (in the line $y=x$) of the graph on the left. Write the equation of the graph on the right.

$$
y=\sqrt{2 x-4}
$$

$$
x=\sqrt{2} y-4
$$

