The Antiderivative

The Indefinite Integral

Recall that the function $F(x)$ is an antiderivative of the function $f(x)$ if it has the property that $\frac{d F(x)}{d x}=f(x)$ or $F^{\prime}(x)=f(x)$. Also, if $F(x)$ is an antiderivative of $f(x)$, then so is $F(x)+C$.
The set of all antiderivatives of a function $f(x)$ is called the indefinite integral of f with respect to x and is denoted by

$$
\int f(x) d x
$$

the symbol \int is_integral symbol \rightarrow "antidifferentiation" the function f is the \qquad x is the variable of integration

Thus this notation simply means to find all antiderivatives of the function $f(x)$. By the Mean Value Theorem, we saw that

$$
\int f(x) d x=F(x)+C
$$

This is read as the indefinite integral of $f(x)$ with respect to x is $F(x)+C$. The constant C is called the constant of integration and must be included in your answer. Once $F(x)+C$ is found, we have integrated or evaluated the integral.

Examples

1. Evaluate $\int 6 x d x=3 x^{2}+C$

How does this answer compare to $\int 6 t d t ?=3 t^{2}+C$
2. Evaluate: $\int \frac{1}{\sqrt[3]{x}} d x=\int x^{-\frac{1}{3}} d x=\frac{3}{2} x^{\frac{2}{3}}+C$
3. Evaluate:

$$
\begin{array}{ll}
\int \cos x d x=\sin x+C & \text { check by differentiating } \\
\int \cos 2 x d x=\frac{1}{2} \sin (2 x)+C & y^{\prime}=\frac{1}{2} \cos (2 x) \cdot \not 2 \\
\int \cos 3 x d x & =\frac{1}{3} \sin (3 x)+C \\
\int \cos k x d x & =\frac{1}{k} \sin (k x)+C
\end{array}
$$

4. Evaluate:

$$
\begin{aligned}
& \int e^{x} d x=e^{x}+C \\
& \int e^{2 x} d x=\frac{1}{2} e^{2 x}+C \\
& \int e^{3 x} d x \\
& =\frac{1}{3} e^{3 x}+C \\
& \int e^{k x} d x
\end{aligned}=\frac{1}{k} e^{k x}+C .
$$

check.

$$
y^{\prime}=\frac{1}{2} e^{2 x} \cdot(2)
$$

5. Evaluate: $\int \stackrel{\left(3 x^{2}+7 x-5\right)}{=}=x^{3}+\frac{7}{2} x^{2}-5 x+C$
