Math 12 Pre-Calculus
 Warm-Up

1. The graph of $y=\sqrt{9-x^{2}}$ is shown to the right.

Write the equation for each of the following graphs that are
 transformations of $y=\sqrt{9-x^{2}}$.

B.

2. What change might have occurred to produce the transformed graph to the right?

1.3 Combining Transformations

Part 1
Sketch the graph of $y=|x|$ on the grid below. Then, perform the following transformations on the function.
a) Translate 4 units to the right.
b) Compress horizontally by a factor of $1 / 2$.

Write the equation of the transformed function, and sketch its graph on the same grid below.

$$
\begin{aligned}
& (-1,1) \rightarrow(3,1) \longrightarrow(1.5,1) \\
& (0,0) \rightarrow(4,0) \longrightarrow(2,0) \\
& (1,1) \rightarrow(5,1) \longrightarrow(2.5,1) \\
& \text { Equation of the transformed function: }
\end{aligned}
$$

$$
\begin{array}{rl}
y=f(x) & \longrightarrow f(x-4) \\
y=|x| & \rightarrow f(2 x-4) \\
x \rightarrow y=|x-4| & \rightarrow y=|2 x-4| \\
x \rightarrow x-4 & x \rightarrow 2 x
\end{array}
$$

Part 2

As in Part 1, sketch the graph of $y=|x|$ on the grid below. This time, however, perform the same transformations but in the reverse order.
a) Compress horizontally by a factor of $1 / 2$.
b) Translate 4 units to the right.

Write the equation of the transformed function, and sketch its graph on the same grid below.

Equation of the transformed function:

$$
\begin{aligned}
& (-1,1) \rightarrow(-.5,1) \rightarrow(3.5,1) \\
& (0,0) \rightarrow(0,0) \rightarrow(4,0) \\
& (1,1) \rightarrow(.5,1) \rightarrow(4.5,1) \\
& y=f(x) \rightarrow y=f(2 x) \rightarrow y=f(2(x-4)) \\
& y=|x| \rightarrow y=|2 x| \rightarrow y=|2(x-4)| \\
& \\
& x \rightarrow 2 x \quad
\end{aligned}
$$

What can you conclude about the order of applying a horizontal translation and a horizontal compression or expansion? the order does matter.

Part 3

Sketch the graph of $y=|x|$ on the grid below. Then, perform the following transformations on the function.
a) Translate 4 units down.
b) Compress horizontally by a factor of $1 / 2$.

Write the equation of the transformed function, and sketch its graph on the same grid below.

$$
\begin{aligned}
& (-2,2) \rightarrow(-2,-2) \rightarrow(-1,-2) \\
& (0,0) \rightarrow(0,-4) \\
& (2,2) \rightarrow(0,-4) \\
& \hline(2,-2)
\end{aligned}
$$

Equation of the transformed function:

$$
y=f(x) \longrightarrow y=f(x)-4 \longrightarrow y=f(2 x)-4
$$

$$
y=|x| \rightarrow y=|x|-4 \rightarrow y=|2 x|-4
$$

Part 4

As in Part 3, sketch the graph of $y=|x|$ on the grid below. This time, however, perform the same transformations in the reverse order.
a) Compress horizontally by a factor of $1 / 2$.
b) Translate 4 units down.

Write the equation of the newly transformed function, and sketch its graph on the same grid below.

Equation of the transformed function:

What can you conclude about the order of applying a vertical translation and a horizontal compression or expansion?

$$
\begin{aligned}
& (-2,2) \rightarrow(-1,2) \quad(-1,-2) \\
& (0,0) \longrightarrow(0,2) \longrightarrow(0,-2) \\
& (2,2) \rightarrow(1,2) \rightarrow(1,-2) \\
& y=f(x) \rightarrow y=f(2 x) \rightarrow y=f(2 x) \rightarrow f \\
& y=|x| \rightarrow y=|2 x| \rightarrow|=|2 x|-4
\end{aligned}
$$

Example 1:
Describe what happens to the equation of a function $y=f(x)$ when you expand its graph vertically by a factor of 2, then translate 3 units up.

$$
y=f(x) \longrightarrow y=2 f(x) \longrightarrow y=2 f(x)+3
$$

Describe what happens to the equation of a function $y=f(x)$ when you translate 3 units up, then expand its graph vertically by a factor of 2 .

$$
y=f(x) \longrightarrow y=f(x)+3 \longrightarrow y=2[f(x)+3] \stackrel{\text { or }}{=} y=2 f(x)+6
$$

Describe what happens to the equation of a function $y=f(x)$ when you reflect in the y-axis, expand its graph vertically by a factor of 2 , translate 3 units up, compress horizontally by a factor of $1 / 2$ and finally translate 9 units left.
order matters.

Transformation	Equation
Original function	$y=f(x)$
reflect in the y-axis	$y=f(-x)$
expand vertically by a factor of 2	$y=2 \cdot f(-x)$
translate 3 units up	$y=2 f(-x)+3$
compress horizontally by a factor of $1 / 2$	$y=2 f(-2 x)+3$
translate 9 units left	$y=2 f(-2(x+9))+3$

Example 2: Given the equations, complete the following table by describing the transformation that has occurred at each stage of the mapping.

Transformation	Equation
Original function	$y=x^{3}$
v. reflection in x-axis.	$y=-x^{3}$
v. expansion by factor of 4	$y=-4 x^{3}$
h. compression by factor of $\frac{1}{3}$	$y=-4[3 x]^{3}$
h. translation 1 unit right.	$y=-4[3(x-1)]^{3}$
v. translation 5 units down.	$y=-4[3(x-1)]^{3}-5$

Example 3:
The function $y=f(x)$ is transformed to $y=f(2 x+4)$. Identify the horizontal expansion or compression factor, and then describe the following translation that occurs.

$$
\begin{aligned}
& y=f((2 x)+4) \\
& y=f(x) \rightarrow y=f(x+4) \rightarrow y=f(2 x+4)
\end{aligned}
$$

$$
y=f(2 x+4) \text { or } y=f(2(x+2))
$$

this shows translation first, then compression
compression by factor of $\frac{1}{2}$
then translation 2 units left

Example 4:
In the diagram below, $y=f(x)$ is graphed as a solid line. Write the equation of the function defined by the broken line.
v. expansion by factor of 2 .
h. translated 1 unit right.

$$
y=2 f(x-1)
$$

* shortcuts

Example 5
The point $(-4,6)$ is on the graph of $y=f(x)$. Determine the coordinates of the point on the transformed function:
a) $y=-f(2(x+1))-5$
b) $y=-3 f(-2 x+10)+8$
c) $\frac{-y-3}{5}=f(-2 x+8)$

$$
\begin{aligned}
& y_{n}=-(6)-5 \\
& y_{n}=-11
\end{aligned}
$$

$$
y_{n}=-3(6)+8
$$

$$
-y-3=5 f(-2 x+8)
$$

$$
y_{n}=-10
$$

$$
-y=5 f(-2 x+8)+3
$$

$x_{n}=-3$

$$
x_{n}=7
$$

$$
y=-5 f(-2 x+8)-3
$$

$(-3,-11)$

$$
(7,-10)
$$

$$
-4 \rightarrow-14 \longrightarrow
$$

$$
\begin{aligned}
& y_{n}=-33 \\
& x_{n}=6 \\
& (6,-33)
\end{aligned}
$$

Given the graph of $y=f(x)$ below, determine the equation of the transformed graph to the right.

$$
\begin{aligned}
& p 38 \# 1-8 \\
& p 38 \# 9-11,13,17, C 2,13 * 16,18 .
\end{aligned}
$$

