if $f(x)$ and $g(x)$ are inverses $g^{\prime}(b)=\frac{1}{f^{\prime}(a)}$
3.7 Warmup (a, b) is on $f(x) \quad(b, a)$ is on $g(x)$

1. If $f(x)=2^{x}+x$ and $g(x)=f^{-1}(x)$, then what is $g^{\prime}(3)$? $g(x)$ has $(3,1)$

$$
g^{\prime}(3)=\frac{1}{f^{\prime}(1)}
$$

$f(x)$ has $(1,3)$

$$
x=2^{y}+y
$$

$$
\begin{aligned}
& f^{\prime}(x)=2^{x} \cdot \ln 2+1 \\
& f^{\prime}(1)=2 \cdot \ln 2+1
\end{aligned}
$$

$$
g^{\prime}(3)=\frac{1}{2 \ln 2+1}
$$

2. If f and g are inverses of one another, with $f(0)=2, f^{\prime}(0)=-7, f(1)=0$, and $f^{\prime}(1)=13$. What is

$$
\begin{array}{llr}
g^{\prime}(0) ? & & g^{\prime}(0)
\end{array}=\frac{1}{f^{\prime}(1)}
$$

3. Determine the following derivatives:
a) $\frac{d}{d x} \log _{3} \frac{2 x^{3}}{x-4}$

$$
y=\log _{3} 2 x^{3}-\log _{3}(x-4)
$$

$$
y=\log _{3} 2+3 \log _{3} x-\log _{3}(x-4)
$$

$$
\begin{aligned}
& y^{\prime}=0+3 \frac{1}{x \ln 3}- \frac{1}{(x-4) \ln 3}(1) \\
& \text { eg } \quad \begin{aligned}
y & =\log x^{4} \\
& =4 \log x
\end{aligned}
\end{aligned}
$$

b) $\frac{d}{d x} \ln 5^{x^{2}+\sin x}$

$$
y^{\prime}=\ln 5(2 x+\cos x)
$$

$$
y=\left(x^{2}+\sin x\right) \ln 5
$$

4. Find the tangent (s) to $y=\ln x$ which have a slope of 2 .

$$
\begin{array}{ll}
y^{\prime}=2 & y^{\prime}=\frac{1}{x} \\
\frac{1}{x}=2 & y-\ln \frac{1}{2}=2\left(x-\frac{1}{2}\right) \\
x=\frac{1}{2} \quad y=\ln \left(\frac{1}{2}\right) & y+\ln 2=2 x-1
\end{array}
$$

Logarithmic Differentiation

Exponential Functions
(variable in the exponent)

Power Functions
(variable in the base)

$$
\begin{gathered}
y=a^{x} \\
y^{\prime}=a^{x} \cdot \ln x
\end{gathered}
$$

What about functions of the form $y=x^{x}$? This function is neither an exponential nor a power function, but seems to be some combination of the two.

One way to differentiate functions of this form is to use the fact that $x=e^{\ln x}(x>0)$ and to rewrite the base as this.

$$
\begin{aligned}
& y=\left(e^{\ln x}\right)^{x} \\
& y=e^{x \ln x} \\
& y^{\prime}=e^{x \ln x} \cdot\left[1 \cdot \ln x+\frac{1}{x} \cdot x\right]
\end{aligned}\left\{\begin{array}{l}
y^{\prime}=e^{x \cdot \ln x} \cdot[\ln x+1]
\end{array}\right.
$$

Another way to differentiate functions of this form is to use a technique called logarithmic differentiation. This process involves the following:
a) take the logarithm of both sides of the equation
b) use logarithmic rules to rewrite the complicated side in the simplest form for differentiation
c) differentiate implicitly, solve for y^{\prime} and then substitute for y

$$
\begin{aligned}
& y=x^{x} \\
& \ln y=\ln x^{x} \\
& \ln y=x \ln x \\
& \frac{1}{y} \cdot y^{\prime}=1 \cdot \ln x+x \cdot \frac{1}{x}
\end{aligned} \quad\left[\begin{array}{l}
\frac{1}{y} \cdot y^{\prime}=\ln x+1 \\
y^{\prime}=y(\ln x+1) \\
y^{\prime}=x^{x}(\ln x+1)
\end{array}\right.
$$

This technique can also be used to differentiate complicated functions involving products, quotients or radicals of functions.

Determine the derivative for each of the following:

$$
\begin{aligned}
& \text { 1) } \left.\begin{array}{l}
y=\frac{x^{3} \sqrt{16-5 x}}{(3 x-7)^{2}} \\
\ln y=\ln \left(\frac{x^{3} \sqrt{16-5 x}}{(3 x-7)^{2}}\right) \\
\ln y=\ln x^{3}+\ln \sqrt{16-5 x}-\ln (3 x-7)^{2} \\
\ln y=3 \ln x+\frac{1}{2} \ln (16-5 x)-2 \ln (3 x-7) \\
\frac{1}{y} \cdot y^{\prime}=3 \cdot \frac{1}{x}+\frac{1}{2}\left(\frac{1}{16-5 x}\right) \cdot(-5)-2\left(\frac{1}{3 x-7}\right) \cdot(3) \\
\text { 2) } y=\sqrt{\frac{1-\cos \theta}{1+\cos \theta}} \\
\ln y=\ln \left(\frac{1-\cos \theta}{1+\cos \theta}\right)^{\frac{1}{2}} \quad y^{\prime}=\left(\frac{x^{3} \sqrt{16-5 x}}{(3 x-7)^{2}}\right)\left[\frac{3}{x}-\frac{5}{2(16-5 x)}-\frac{6}{3 x-7}\right] \\
\ln y=\frac{1}{2} \ln \left(\frac{1-\cos \theta}{1+\cos \theta}\right) \\
\left.\ln y=\frac{1}{2}[\ln (1-\cos \theta)-\ln (1+\cos \theta)]\right) y^{\prime}=\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}\left(\frac{1}{2}\right)\left(\frac{\sin \theta}{1-\cos \theta}+\frac{\sin \theta}{1+\cos \theta}\right) \\
y^{\prime}=\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}\left(\frac{1}{2}\right)\left[\frac{\sin \theta+\sin \theta \cos \theta}{1-\cos \theta}+\frac{\sin \theta-\sin \theta \cos \theta}{1-\cos \theta}\right.
\end{array}\right] \\
& \left.\frac{1}{y} \cdot y^{\prime}=\frac{1}{2}\left[\frac{1}{1-\cos \theta} \cdot \sin \theta-\frac{1}{1+\cos \theta} \cdot-\sin \theta\right]\right] \quad y^{\prime}=\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}\left(\frac{1}{2}\right)\left(\frac{2 \sin \theta}{\sin \theta}\right) \\
& \text { 3) } y=(\sin x)^{x}
\end{aligned}
$$

$\ln y=x \ln (\sin x)$

$$
\frac{1}{y} \cdot y^{\prime}=x \cdot \frac{1}{\sin x} \cdot \cos x+\ln \sin x
$$

$$
y^{\prime}=(\sin x)^{x} \cdot\left[x \cdot \frac{\cos x}{\sin x}+\ln \sin x\right]
$$

$$
y^{\prime}=(\sin x)^{x} \cdot[x \cdot \cot x+\ln \sin x]
$$

4)

$$
\begin{aligned}
& y=x^{\sin x} \\
& \ln y=\sin x \cdot \ln x \\
& \frac{1}{y} \cdot y^{\prime}=\cos x \cdot \ln x+\sin x \cdot \frac{1}{x} \\
& y^{\prime}=\left(x^{\sin x}\right)\left(\cos x \ln x+\frac{\sin x}{x}\right)
\end{aligned}
$$

5)

$$
\begin{aligned}
& y=\ln x+\ln y \\
& y^{\prime}=\frac{1}{x}+\frac{1}{y} \cdot y^{\prime} \\
& y^{\prime}-\frac{1}{y} \cdot y^{\prime}=\frac{1}{x} \\
& y^{\prime}\left(1-\frac{1}{y}\right)=\frac{1}{x}
\end{aligned}
$$

implicit differentiation

$$
\text { 6) } \begin{aligned}
y & =\ln _{\sin ^{2} x} \\
y & =2 \ln \sin x \\
y^{\prime} & =2 \frac{1}{\sin x} \cdot \cos x \\
y^{\prime} & =\quad \cdot 2 \cot x
\end{aligned}
$$

7)

$$
\begin{aligned}
& \frac{\ln x y=3-2 x+5 y}{\frac{1}{x y} \cdot\left(y+x y^{\prime}\right)=0-2+5 y^{\prime}} \\
& \frac{1}{x}+\frac{1}{y} y^{\prime}=-2+5 y^{\prime} \\
& \quad \frac{1}{y} y^{\prime}-5 y^{\prime}=-2-\frac{1}{x} \\
& y^{\prime}\left(\frac{1}{y}-5\right)=\frac{\left(-2-\frac{1}{x}\right)}{\left(\frac{1}{y}-5\right)}=\frac{\left(\frac{-2 x-1}{x}\right)}{\left(\frac{1-5 y}{y}\right)}=\frac{(-2 x-1)(y)}{x(1-5 y)}
\end{aligned}
$$

