Warmup

Determine the derivatives of

1. $y = \pi^x$

- 2. $y = x^{\pi}$
- $3. \qquad y = 5^{\sin x^2}$
- 4. A tangent to the graph of $y = 2^x$ passes through the origin. Find the equation of this tangent.

5. Find all points on the graph $y = (x+1)e^x$ where there is a horizontal tangent.

Derivatives of Logarithmic Functions

To find the derivative of $y = \ln x$, we use the fact that $y = \ln x \iff x = e^y$ (These are two different ways of stating the same thing)

Thus we can rewrite $y = \ln x$ as $x = e^{y}$ and differentiate implicitly.

$$x = e^{y}$$

$$1 = e^{y} \cdot y'$$

$$y' = \frac{1}{e^{y}}$$

$$\frac{d(\ln x)}{dx} = \frac{1}{x}$$
Handy Dandy
$$a =$$

$$a^{x} =$$

$$a^{x} =$$

$$bog_{B} x = \frac{\ln}{\ln}$$

$$ln x =$$

Handy Dandy Logarithmic Properties

$$a = e^{\ln a} = B^{\log_B a}$$

$$a^x = e^{x\ln a} = B^{x\log_B a}$$

$$a^x = change \quad \text{formula.}$$

$$\log_B x = \frac{\ln x}{\ln B} = \frac{\log x}{\log B} = \frac{\log_A x}{\log_A B}$$

$$\ln x = \log_B x$$

$$\frac{d}{dx}\ln u = \underbrace{\frac{1}{u}}_{dx} \underbrace{\frac{du}{dx}}_{dx}$$

To differentiate $y = \log_B x$, use the change of base formula and then differentiate.

$$y = \frac{\ln x}{\ln B}$$
$$y = \frac{1}{\ln B} \cdot \ln x$$
$$y' = \frac{1}{\ln B} \cdot \frac{1}{x}$$

$$\frac{d}{dx}\log_B u = \frac{\ln B}{\ln B} \cdot \frac{1}{u} \cdot \frac{du}{dx}$$

Determine the derivatives of the following functions

1.
$$y = \ln 8x$$

 $y' = \frac{1}{8x} \cdot 8$
 $y' = \frac{1}{x}$
2. $y = \ln x^4$
 $y' = \frac{1}{x''} \cdot 4x^3$
 $y' = \frac{4}{x}$

3.
$$y = \ln(\cos x)$$
 $y' = \frac{1}{\cos x} \cdot -\sin x$
 $y' = -\frac{1}{\cos x} \cdot -\sin x$
4. $y = \ln(x^2\sqrt{x+1})$ $x' \cdot (x+1)^{\frac{1}{2}}$
 $y' = \frac{1}{x^2\sqrt{x+1}} \left(2x\sqrt{x+1} + \frac{1}{2}(x+1)^2 \cdot x^2\right)$
 $y' = \frac{1}{x^2\sqrt{x+1}} \left(\frac{2x\sqrt{x+1}}{1} + \frac{x^2}{2\sqrt{x+1}}\right)$
5. $y = \log x^8$ $y' = \frac{2}{x} + \frac{1}{2}(x+1)$
 $y' = \frac{1}{\ln 0} \cdot \frac{1}{x^6} \cdot 8x^7$

$$\underbrace{Or}_{y_{3}} y_{3} \ln x^{2} + \ln \sqrt{x+1} \\
y'_{2} \frac{1}{x^{2}} \cdot \frac{2x}{x^{2}} + \frac{1}{\sqrt{x+1}} \cdot \frac{1}{2} (x+1)^{2} \\
y'_{2} \frac{2}{x} + \frac{1}{2(\sqrt{x+1})^{2}} \\
y'_{2} \frac{2}{x} + \frac{1}{2(\sqrt{x+1})^{2}} \\
y'_{2} \frac{2}{x} + \frac{1}{2(x+1)}$$

6.
$$y = \log_5(1+x^3)$$

 $y': \frac{1}{\ln 5} \frac{1}{1+x^3} \cdot 3x^2$

9.
$$y = (x + \sin 2x)^{\sqrt{2}}$$

 $y' = \sqrt{2} (x + \sin 2x)^{\sqrt{2}} \cdot [1 + \cos(2x) \cdot 2]$

10.
$$y = x^{x}$$
 * neither exponential functions nor power functions
 $\ln y = \ln x$ * use implicit differentiation
 $\ln y = x \cdot \ln x$ $\rightarrow \frac{1}{y} \cdot y' = 1 \cdot \ln x + \frac{1}{x} \cdot x$
 $y' = y(\ln x + 1)$
11. $y = x^{\sin x}$ $y' = x^{x}(\ln x + 1)$
 $\ln y = \ln(x^{\sin x})$ $\frac{1}{y} \cdot y' = \cos x \ln x + \frac{1}{x} \cdot \sin x$
 $\ln y = (\sin x)(\ln x)$ $y' = y(\cos x \ln x + \frac{1}{x} \sin x)$
 $y' = x^{\sin x}(\cos x \ln x + \frac{1}{x} \sin x)$