Warmup

Determine the derivatives of

1. $y=\pi^{x}$
2. $y=x^{\pi}$
3. $y=5^{\sin x^{2}}$
4. A tangent to the graph of $y=2^{x}$ passes through the origin. Find the equation of this tangent.
5. Find all points on the graph $y=(x+1) e^{x}$ where there is a horizontal tangent.

Derivatives of Logarithmic Functions
To find the derivative of $y=\ln x$, we use the fact that $y=\ln x \Leftrightarrow x=e^{y}$ (These are two different ways of stating the same thing)

Thus we can rewrite $y=\ln x$ as $x=e^{y}$ and differentiate implicitly.

$$
\begin{aligned}
& x=e^{y} \\
& 1=e^{y} \cdot y^{\prime} \\
& y^{\prime}=\frac{1}{e^{y}} \\
& \frac{d(\ln x)}{d x}=\frac{1}{x}
\end{aligned}
$$

Handy Dandy Logarithmic Properties

$$
a=e^{\ln a}=B^{\log _{B} a}
$$

$$
a^{x}=e^{x \ln a}=B^{x \log _{B} a}
$$

* Base change formula.

$$
\begin{aligned}
& \log _{B} x=\frac{\ln x}{\ln B}=\frac{\log x}{\log B}=\frac{\log _{A} x}{\log _{A} B} \\
& \ln x=\log _{e} x
\end{aligned}
$$

$$
\frac{d}{d x} \ln u=\frac{1}{u} \cdot \frac{d u}{d x}
$$

To differentiate $y=\log _{B} x$, use the change of base formula and then differentiate.

$$
\begin{aligned}
& y=\frac{\ln x}{\ln B} \\
& y=\frac{1}{\ln B} \cdot \ln x \\
& y^{\prime}=\frac{1}{\ln B} \cdot \frac{1}{x}
\end{aligned}
$$

$$
\frac{d}{d x} \log _{B} u=\frac{1}{\ln B} \cdot \frac{1}{u} \cdot \frac{d u}{d x}
$$

1. $y=\ln 8 x$

$$
\begin{aligned}
& y^{\prime}=\frac{1}{8 x} \cdot 8 \\
& y^{\prime}=\frac{1}{x}
\end{aligned}
$$

2. $y=\ln x^{4} \quad y^{\prime}=\frac{1}{x^{4}} \cdot 4 x^{3}$

$$
y^{\prime}=\frac{4}{x}
$$

3. $y=\ln (\cos x) \quad y^{\prime}=\frac{1}{\cos x} \cdot-\sin x$

$$
y^{\prime}=-\tan x
$$

4. $\quad y=\ln \left(x^{2} \sqrt{x+1}\right) \quad x^{2} \cdot(x+1)^{\frac{1}{2}}$
or $y=\ln x^{2}+\ln \sqrt{x+1}$

$$
\begin{aligned}
& y=\ln \left(x^{2} \sqrt{x+1}\right) \\
& y^{\prime}=\frac{1}{x^{2} \cdot \sqrt{x+1}}\left(2 x \sqrt{x+1}+\frac{1}{2}(x+1)^{-\frac{1}{2}} \cdot x^{2}\right) \\
& y^{\prime}=\frac{1}{x^{2} \sqrt{x+1}}\left(\frac{2 x \sqrt{x+1}}{1}+\frac{x^{2}}{2 \sqrt{x+1}}\right)
\end{aligned}
$$

$$
y^{\prime}=\frac{1}{x^{2}} \cdot 2 x+\frac{1}{\sqrt{x+1}} \cdot \frac{1}{2}(x+1)^{-\frac{1}{2}}
$$

$$
y^{\prime}=\frac{2}{x}+\frac{1}{2(\sqrt{x+1})^{2}}
$$

5. $y=\log _{10} x^{8} \quad y^{\prime}=\frac{2}{x}+\frac{1}{2(x+1)}$ $y^{\prime}=\frac{2}{x}+\frac{1}{2(x+1)}$

$$
y^{\prime}=\frac{1}{\ln 10} \cdot \frac{1}{x^{8}} \cdot 8 x^{7}
$$

6. $\quad y=\log _{5}\left(1+x^{3}\right)$

$$
y^{\prime}=\frac{1}{\ln 5} \frac{1}{1+x^{3}} \cdot 3 x^{2}
$$

* be aware you may need
a) implicit differentiation
b) rules for logarithms.
use \log rule for quotients.

$$
\text { 7. } \begin{aligned}
y & =\log _{2}\left(\frac{x^{2}}{x^{3}-8}\right) \\
y & =\log _{2} x^{2}-\log _{2}\left(x^{3}-8\right) \\
y^{\prime} & =\frac{1}{\ln 2} \cdot \frac{1}{x^{2}} \cdot 2 x-\frac{1}{\ln 2} \cdot \frac{1}{\left(x^{3}-8\right)} \cdot 3 x^{2} \\
y^{\prime} & =\frac{1}{\ln 2}\left(\frac{2}{x}-\frac{3 x^{2}}{x^{3}-8}\right)
\end{aligned}
$$

Show that the Power Rule $\frac{d}{d x} x^{n}=n \cdot x^{n-1}$ is true for all real n.
9. $y=(x+\sin 2 x)^{\sqrt{2}}$

$$
y^{\prime}=\sqrt{2}(x+\sin 2 x)^{\sqrt{2}-1} \cdot[1+\cos (2 x) \cdot 2]
$$

10. $y=x^{x} \quad *$ neither exponential functions nor power functions

$$
\begin{aligned}
\ln y=\ln x^{x} \\
\ln y=x \cdot \ln x
\end{aligned} \quad \begin{aligned}
& \text { *use implicit differential } \\
& y=x^{\sin x}
\end{aligned}, y^{\prime}=1 \cdot \ln x+\frac{1}{x} \cdot x ~ 子 y^{\prime}=y(\ln x+1) .
$$

11. $y=x^{\sin x}$
$\ln y=\ln \left(x^{\sin x}\right)$

$$
\ln y=(\sin x)(\ln x)
$$

$$
\begin{aligned}
\frac{1}{y} \cdot y^{\prime} & =\cos x \ln x+\frac{1}{x} \cdot \sin x \\
y^{\prime} & =y\left(\cos x \ln x+\frac{1}{x} \sin x\right) \\
y^{\prime} & =x^{\sin x}\left(\cos x \cdot \ln x+\frac{\sin x}{x}\right)
\end{aligned}
$$

