Derivatives of Exponential Functions
Calculus 12
Name
Unit 3.5

Recognize the difference between exponential functions and power functions

Exponential Functions
Variable in the exponent, base is constant
Ex: $y=2^{x}, y=e^{\sin x}, \quad y=\left(\frac{1}{2}\right)^{x^{2}+7 x+1}$
Rule: $\frac{d}{d x} a^{u}=a^{u} \cdot \ln a \cdot \frac{d u}{d x}$

Power Functions
Variable in the base, exponent is constant
Ex: $\quad y=x^{4}, \quad y=(\sin x)^{8}, \quad y=\left(x^{2}+\cos x\right)^{-\frac{2}{3}}$

$$
y=x^{e} \quad y=x^{\sqrt{2}}
$$

Rule: $\frac{d}{d x} u^{n}=n u^{n-1} \frac{d u}{d x}$

1. Determine the derivatives of each of the following functions:
a) $y=5^{\sin x}$

$$
y^{\prime}=5^{\sin x} \cdot \ln 5 \cdot(\cos x)
$$

b) $y=e^{2 x+3}$
c) $y=7^{\sin x+\cos x}$
d) $y=e^{2} x+2 x^{e}$

$$
y^{\prime}=\underline{e}^{e^{2}}+2 \underline{2 e x^{e-1}}
$$

e) $y=\underbrace{10^{x}}+x^{10}$
f) $y=x^{\sqrt{2}}$

$$
y^{\prime}=7^{\sin x+\cos x} \cdot \ln 7 \cdot(\cos x-\sin x)
$$

$y^{\prime}=e^{2 x+3} \cdot \underbrace{\ln e}_{\text {cancel cut }} \cdot(2)=2 \cdot e^{2 x+3}$
$y^{\prime}=e^{e^{2}}+2 e x^{e-1}$
$y^{\prime}=10^{x} \cdot \ln 10 \cdot(1)+10 x^{9}$
$y^{\prime}=10^{x} \cdot \ln 10+10 x^{9}$
$y^{\prime}=\sqrt{2} \cdot x^{(\sqrt{2}-1)}$
g) $y=\sqrt{2}^{x}$

$$
y^{\prime}=\sqrt{2}^{x} \cdot \ln \sqrt{2} \cdot 1
$$

2. Find the equation of the tangent to $y=2^{x}$ at $x=1$. coordinate $y(1)=2^{\prime}$

$$
(1,2) \quad y=2
$$

$$
y-2=2 \ln 2(x-1)
$$

$$
\begin{aligned}
m_{\tan } & =\left.y^{\prime}\right|_{x=1} \\
& =\left.2^{x} \cdot \ln 2 \cdot(1)\right|_{x=1}=2 \ln 2
\end{aligned}
$$

3. Find all points on the curve $y=x^{2} e^{x}$ where the tangent line is horizontal.
product rule or $m \tan =0$
or $m \tan =0$
4. Determine $\lim _{h \rightarrow 0} \frac{5^{x+h}-5^{x}}{h}$

$$
=\frac{d\left(5^{x}\right)}{d x}=5^{x} \cdot \ln 5
$$

5. Determine the equation of the tangent to $y=e^{x}$ which passes through the origin.

$$
\begin{array}{ll}
m \tan =\frac{y-0}{x-0} \\
m \tan = & \frac{e^{x}-0}{x-0} \\
e^{x}=\frac{e^{x}}{x} & y^{\prime}=e^{x} \\
y^{\prime}=e^{x} \\
y=e^{\prime}
\end{array}
$$

$$
y-e=e^{\prime}(x-1)
$$

$$
\begin{aligned}
& y^{\prime}=2 x \cdot e^{x}+e^{x} \cdot \ln e \cdot 1 \cdot x^{2} \\
& 0=2 x \cdot e^{x}+x^{2} e^{x} \\
& 0=e^{x} \cdot x(2+x) \\
& x=0,-2 \\
& (0,0) \\
& \underline{=}=-2 \\
& y=(-2)^{2} \cdot e^{-2} \\
& =4 \cdot \frac{1}{e^{2}} \\
& \left(-2, \frac{4}{e^{2}}\right)
\end{aligned}
$$

