The Derivative of $y = e^x$

By the definition of the derivative, $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$, we have that if $f(x) = e^x$ then

$$f'(x) = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h}$$

$$= \lim_{h \to 0} \frac{e^x \cdot e^h - e^x}{h}$$

$$= \lim_{h \to 0} \frac{e^x \cdot (e^h - 1)}{h}$$

$$= \lim_{h \to 0} e^x \cdot \lim_{h \to 0} \frac{e^h - 1}{h}$$

This leaves us with the problem of determining $\lim_{h \to 0} \frac{e^h - 1}{h}$

By examining this limit numerically, we have the following:

h	$rac{e^h-1}{h}$	h	$rac{e^h-1}{h}$
0.1	1.1052	-0.1	0.9048
0.01	1.0101	-0.01	0.9900
0.001	1.0010	-0.001	0.9990
0.0001	1.0001	-0.0001	0.9999

Thus it appears that $\lim_{h \to 0} \frac{e^h - 1}{h} =$ _____

Applying this to the limit above, we have $\frac{d}{dx}e^x = \lim_{h \to 0} e^x \cdot \lim_{h \to 0} \frac{e^h - 1}{h} = \lim_{h \to 0} e^x \cdot 1 = \underline{e^x}$

In other words, $\frac{d}{dx}e^x = e^x$ or the derivative of the exponential

function e^x is simply the function itself. This is the **only** function (other than the trivial function y = 0) which possesses this property. Put in another way, on the graph of $y = e^x$, the *y* coordinate of any point also tells you the slope at that point.

 $y' = e^{x \cdot \ln 2} \cdot \ln 2$ $\frac{d(2^x)}{dx} = 2^x \cdot \ln 2$