
The Derivative of xy e  
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This leaves us with the problem of determining 
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By examining this limit numerically, we have the 
following: 
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0.1 1.1052 0.1  0.9048 

0.01 1.0101 0.01  0.9900 

0.001 1.0010 0.001  0.9990 

0.0001 1.0001 0.0001  0.9999 
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Applying this to the limit above, we have 
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In other words,  x xd e e
dx

  or the derivative of the exponential 

function xe is simply the function itself.  This is the only 

function (other than the trivial function ________) which 

possesses this property.  Put in another way, on the graph of 
xy e , the y coordinate of any point also tells you the slope at 

that point. 
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