Petermine Probability Uling Tree Diagrams
Outcomes of Inde pendent Events
Homework Assigned: 11.3 Petermining Probabilities using Fractions
Chapter Review \quad Chapter Checklist

Date: \qquad
11.1 Determining Probabilities Using Tree Diagrams

Probability is the likelihood or chance of an outcome occurring during an event
Some definitions for you to know:

Sample Space:
list of all possible results for an event.
eg coin: H, T
Independent Events: the result of one does not influence the result of the other.
outcomes: possible results. All of them together make up the sample space.
We can often determine probabilities from a tree diagram.
\mathcal{A} spinner is divided into three equal regions called $\mathcal{A}, \mathcal{B}, \mathcal{C}$. The spinner is spun twice.
a.) What is the probability of spinning an \mathcal{A} on the first spin?

$$
P(A)=\frac{1}{3}
$$

Fraction	Decimal	Percent
$1 / 3$	$0.333 \ldots$	33.3%

6) We can represent the sample space by drawing a tree diagram.

c) What do you think the probability of spinning an \mathcal{A} followed by a \mathcal{B} $P(A$ followed by $B)=\frac{1}{9}$

$$
P(A, B)=\frac{1}{9}
$$

$A A$	
$A B$	
$A C$	sample
$B A$	space
$B B$	
$C A$	
$C B$	
$C C$	

$P(A$ and $B)=\frac{2}{9}$
order didn't matter.
d) What is the probability of getting the same letter on both spins How can you represent in probability format

$$
P(\text { same letter })=\frac{3}{9} \text { or } \frac{1}{3}
$$

We can use probability format to represent this question.

Slick Rick McChiploves playing games with dice. He rolls two standard six-sided die. One die is black and one die is red. He always rolls two at a time. We can use a table to create a sample space for this situation.

Black

	1	2	3	4	5	6
1	1,1	1,2	1,3	1,4	1,5	1,6
2	2,1	2,2	2,3	2,4	2,5	2,6
3	3,1	3,2	3,3	3,4	3,5	3,6
4	4,1	4,2	4,3	4,4	4,5	4,6
5	5,1	5,2	5,3	5,4	5,5	5,6
6	6,1	6,2	6,3	6,4	6,5	6,6

a) What is the probability of rolling doubles?

$$
P(\text { doubles })=\frac{6}{36} \text { or } \frac{1}{6}
$$

6) What is the probability of rolling more thanten when we add the two outcomes together?,
$P($ sum $>10)=\frac{3}{36}$
(do not include 10) $\begin{aligned} & \text { Represent this situation in } \\ & \text { probability format }\end{aligned}$
$P($ at least 10$)=\frac{6}{36} \quad$ (these include 10)
c) What is the probability that the number on the red die is one larger than the number on $P($ red is one more than black $)=\frac{5}{36}$
d) What is the probability that the sum of the two numbers is less than 11?

$$
P(\text { sum }<11)=\frac{33}{36}
$$

Represent this situation in probability format
all except 3

