Chapter 11 Probability

11.1 Determine Probability Using Tree Diagrams and Tables	I am now able to:
Homework Assigned: P416 #3, 4, 5, 6, 7, 8, 10 *11, 13	
11.2 Outcomes of Independent Events	I am now able to:
Homework Assigned:	
P423 #4, 5, 6, 7, 8, 9, 10, *12 *13	
11.3 Determining Probabilities using Fractions	I am now able to:
Homework Assigned:	
P432 #4, 5, 6, 7, 8, 9, 10, 11, 12 *13, *15,	
11.4 Chapter Review	Chapter Checklist I have:
Homework Assigned:	O A complete set of notes
P437 #1-51	○ Completed all of the assigned homework
Unit	Test
Ullit	TUST

Date:

11.1 Determining Probabilities Using Tree Diagrams

Probability is the likelihood or chance of an outcome occurring during an event

Some definitions for you to know:

Sample Space: list of all possible results for P(outcome): # favourable outcomes total # of outcomes

Independent Events: the result of one does not influence the result of the other.

Outcomes: possible results. All of them together make up the sample space.

We can often determine probabilities from a tree diagram.

A spinner is divided into three equal regions called A, B, C. The spinner is spun twice.

a.) What is the probability of spinning an A on the first spin?

$$P(A) = \frac{1}{3}$$

Fraction	Decimal	Percent
/3	0.333	33.3 %
	2	3

×100

b) We can represent the sample space by drawing a tree diagram.

AA AB AC BA BB BC CA CB	sample space
of sninnii	na an ∆ folla

c) What do you think the probability of spinning an A followed by a B

$$P(A \text{ followed by } B)$$

 $P(A,B) = \frac{1}{9}$

We can use probability format to represent this question.

d) What is the probability of getting the same letter on both spins How can you represent in probability format

P(same letter) =
$$\frac{3}{9}$$
 or $\frac{1}{3}$

Determining Probabilities from a Table

Slick Rick McChip loves playing games with dice. He rolls two standard six-sided die. One die is black and one die is red. He always rolls two at a time. We can use a table to create a sample space for this situation.

		Bla	rc
1	•	α	

		2	3	4	5	6
t	١, ١	2	,3	1,4	1,5	1.6
2	ر د	<mark>2</mark> ,2	2,3	2,4	2,5	2,6
3	۱, 3	3,2	3 3	3,4	3,5	3,6
4	4 , 1	4,2	4 3	4,4	45	4,6
5	W 	5,2	5,3	5,4	5,5	5,6
6	6,1	6.2	6.3	6,4	6.5	6,6

a) What is the probability of rolling doubles?

$$P(doubles) = \frac{6}{36}$$
 or $\frac{1}{6}$

b) What is the probability of rolling more than ten when we add the two outcomes together?,

$$P(sum > 10) = \frac{3}{36}$$

P(sum > 10) =
$$\frac{3}{36}$$
 (do not include to) Represent this situation in probability format

P(at least 10) = $\frac{6}{36}$ (these include to)

c) What is the probability that the number on the red die is one larger than the number on

the black die? P(red 1s one more than
$$\frac{1}{36}$$

$$P(sum < 11) = \frac{33}{36}$$

Represent this situation in probability format