1. Functions with $f^{\prime}=0$ for all x are constant

If $f^{\prime}(x)=0$ for all x in some interval I, then there exists a constant C such that $f(x)=C$ for all x in the interval I

Proof:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \\
0 & =\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
\end{aligned}
$$

$\therefore f\left(x_{2}\right)=f\left(x_{1}\right)$ for all values of x; the graph is a horizontal
2. Functions with the same derivative differ by a constant If $f^{\prime}(x)=g^{\prime}(x)$ for all x in some interval I, then $f(x)=g(x)+C$ for all x in I
Proof:

$$
\begin{aligned}
f(x) & =g(x)+h(x) \\
f^{\prime}(x) & =g^{\prime}(x)+h^{\prime}(x) \\
\rightarrow f^{\prime}(x) & =f^{\prime}(x)+h^{\prime}(x) \\
0 & =h^{\prime}(x)
\end{aligned}
$$

if $h^{\prime}(x)=0$ then $h(x)$ is a constant

$$
f(x)=g(x)+c
$$

Example: Find the function whose derivative is $\sec ^{2} x$ and which passes through $(\pi, 5)$

$$
\begin{aligned}
& f^{\prime}(x)=\sec ^{2} x \\
& f(x)=\tan (x)+c \\
& 5=\tan (\pi)+c \\
& 5=0+c \\
& c=5
\end{aligned}
$$

The Antiderivative
The function $F(x)$ is an antiderivative of $f(x)$ if $F^{\prime}(x)=f(x)$ for all x in the domain of f. The process of finding the antiderivative is called antidifferentiation.

Example 2: Find the antiderivative of the following functions
a) $f^{\prime}(x)=k x^{0}$
b) $f^{\prime}(x)=x^{\prime}$
c) $f^{\prime}(x)=x^{2}$
d) $f^{\prime}(x)=x^{3}$
e) $f^{\prime}(x)=x^{n}$

$$
\begin{array}{r}
\left.f(x)=k x+c \quad f(x)=\frac{1}{2} x^{2}+c\right) \\
f(x)=\frac{1}{3} x^{3}+c
\end{array}
$$

$$
f(x)=\frac{1}{4} x^{4}+c
$$

$$
f(x)=\frac{1}{n+1} x^{n+1}+c
$$

Example 3: Find the velocity and position functions when an object falls from rest and the acceleration is $9.8 \mathrm{~m} / \mathrm{sec}^{2}$
$S(x)=$ position function initial velocity $=0$
$v(x)=s^{\prime}(x)=$ velocity function initial height $=h_{0}$
$a(x)=V^{\prime}(x)=S^{\prime \prime}(x)=$ acceleration function.

$$
\begin{aligned}
a(x) & =-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
v(x) & =-9.8 x+c \\
0 & =-9.8(0)+c \\
c & =0 \quad \therefore \quad
\end{aligned} \quad \therefore \quad v(x)=-9.8 x \quad s(x)=\text { antiderivative of } v(x)
$$

$$
V(0)=0 \quad 0=-9.8(0)+c
$$

Example 4: Find the velocity and position functions when an object is thrown upward with initial velocity v_{0} and the acceleration is a (where v_{0} and a are constants)

$$
\begin{array}{ll}
V(0)=V_{0} & V(x) \text { is antiderivative of } a(x) \\
a(x)=a & V(x)
\end{array}
$$

$S(x)$ is antiderivative of $v(x)$

$$
\begin{aligned}
& s(x)=a \cdot\left(\frac{1}{2}\right) x^{2}+V_{0} x+c \\
& h(0)=h_{0} \quad h_{0}=\frac{1}{2} a(0)^{2}+v_{0}(0)+c \\
& h_{0}=c \\
& s(x)=\frac{1}{2} a x^{2}+v_{0} x+h_{0}
\end{aligned}
$$

