Derivatives of Inverse Trigonometric Functions
Recall the definition and the graph of $y=\sin ^{-1} x$.
$\sin ^{-1} x=$ the angle with a sine of x between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$
Domain: $\quad-1 \leq x \leq 1$ "value of sine"

Range: $\quad-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$ "angle"
Also $y=\sin ^{-1} x$ and $x=\sin y$ are the same equation provided

From the graph what appears to be true about the slopes of the tangents (derivative) of $y=\sin ^{-1} x$? it is always positive, it is undefined/vertical at $x= \pm 1$

What is $\frac{d}{d x} \sin ^{-1} x$ or $\frac{d}{d x} \arcsin x$?
To differentiate, we will rewrite $y=\sin ^{-1} x$ as $x=\sin y$ and use implicit differentiation to find $\frac{d y}{d x}$.

$$
\begin{aligned}
x & =\sin y \\
\frac{d(x)}{d x} & =\frac{d(\sin y)}{d x} \\
1 & =\frac{\cos y \cdot y^{\prime}}{\cos y} \\
y^{\prime} & =\frac{1}{1} \\
y^{\prime} & =\frac{1}{\cos \left(\sin ^{-1}(x)\right)}
\end{aligned}
$$

$$
\frac{1 / 2 x}{\sqrt{1-x^{2}}}
$$

$$
y^{\prime}=\frac{d\left(\sin ^{-1}(x)\right)}{d x}=\frac{1}{\sqrt{1-x^{2}}}
$$

or if x is a function, apply chain rule

$$
\frac{d\left(\sin ^{-1}(u)\right)}{d x}=\frac{1}{\sqrt{1-u^{2}}} \cdot \frac{d u}{d x}
$$

To find the derivative of $\cos ^{-1} x$, we can use the identity: $\cos ^{-1}(x)=\frac{\pi}{2}-\sin ^{-1}(x)$

$$
\frac{d\left(\cos ^{-1} x\right)}{d x}=\frac{d\left(\frac{\pi}{2}-\sin ^{-1}(x)\right)^{2}}{d x}=\frac{-1}{\sqrt{1-x^{2}}}
$$

Similarly, we can differentiate $y=\tan ^{-1} x$

Domain: $\{$ Reals $\}$

What appears to be true about the slopes of the tangents (derivative) for this function? always positive. max value of derivative at $x=0$
$y=\tan ^{-1} x$ is the same as $x=\tan y$ provided $\quad \frac{-\pi}{2}<y<\frac{\pi}{2}$

$$
\begin{aligned}
& y=\tan ^{-1} x \\
& x=\tan y \\
& 1=\sec ^{2}(y) \cdot y^{\prime} \\
& y^{\prime}=\frac{1}{\sec ^{2} y} \\
& y^{\prime}=\cos ^{2} y \\
& y^{\prime}=\cos ^{2}\left(\tan ^{-1} x\right)
\end{aligned}
$$

$$
x=\tan y<\text { implicit differentiation }
$$

$$
y^{\prime}=\left(\frac{1}{\sqrt{x^{2}+1}}\right)^{2}
$$

$$
y^{\prime}=\frac{1}{x^{2}+1}
$$

To find the derivative of $\cot ^{-1} x$, we can use the identity: $\cot ^{-1}(x)=\frac{\pi}{2}-\tan ^{-1}(x)$

$$
\frac{d\left(\cot ^{-1}(x)\right)}{d x}=\frac{d\left(\frac{\pi}{2}-\tan ^{-1}(x)\right)}{d x}
$$

$$
\frac{d\left(\cot ^{-1}(x)\right)}{d x}=\frac{-1}{x^{2}+1}
$$

Lastly, we can differentiate $y=\sec ^{-1} x$

Domain: $x \geq 1$ or $x \leq-1$
Range: $\quad 0 \leq y \leq \pi \quad y \neq \frac{\pi}{2}$

What appears to be true about the slopes of the tangents (derivative) for this function?
slope is always t but undefined at $x= \pm 1$
$y=\sec ^{-1} x$ is the same as $y=\sec x$ provided \qquad $0 \leq y \leq \pi$

$$
\begin{aligned}
& x=\sec y \\
& 1=\sec y \cdot \tan y \cdot y^{\prime}
\end{aligned}
$$

implicit differentiation

$$
\begin{aligned}
& y^{\prime}=\frac{1}{\sec y \tan y} \\
& y^{\prime}=\frac{1}{\sec \left(\sec ^{-1} x\right) \cdot \tan \left(\sec ^{-1} x\right)}
\end{aligned}
$$

$$
y^{\prime}=\frac{1}{|x| \cdot \sqrt{x^{2}-1}}
$$

tan could be \pm depending on quadrant.

$$
\frac{d\left(\sec ^{-1}(x)\right)}{d x}=\frac{1}{|x| \cdot \sqrt{x^{2}-1}}
$$

To find the derivative of x, we can use the identity: $\csc ^{-1} x=\frac{\pi}{2}-\sec ^{-1} x$

$$
\csc ^{-1} x
$$

$$
\forall \text { same reasoning as } \sin ^{-1}(x) \text { and } \cos ^{-1}(x) \quad \frac{d\left(\csc ^{-1} x\right)}{d x}=\frac{-1}{|x| \cdot \sqrt{x^{2}-1}}
$$

and
$\tan ^{-1}(x)$ and $\cot ^{-1}(x)$

$$
\text { p } 162 \neq 1-15
$$

p162 \#1-15
\#2 $\quad y=\cos ^{-1}\left(\frac{1}{x}\right) \quad \frac{d\left(\cos ^{-1} u\right)}{d x}=\frac{-1}{\sqrt{1-u^{2}}} \cdot \frac{d u}{d x}$

$$
\begin{aligned}
& y^{\prime}=\frac{-1}{\sqrt{1-\left(\frac{1}{x}\right)^{2}}} \cdot-1(x)^{-2} \\
& y^{\prime}=\frac{1}{x^{2} \sqrt{1-\left(\frac{1}{x}\right)^{2}}}=\frac{1}{x^{2} \sqrt{\frac{x^{2}-1}{x^{2}}}}=\frac{1}{x^{2} \cdot \frac{\sqrt{x^{2}-1}}{x}}=\frac{1}{x \sqrt{x^{2}-1}}
\end{aligned}
$$

\#4 $\quad y=\sin ^{-1}(1-t)=\frac{1}{\sqrt{1-(1-t)^{2}}} \cdot(-1)=\frac{-1}{\sqrt{1-(1-t)^{2}}}$

