

Model the trinomials x^2+5x+6 and x^2+3x+2 with algebra tiles. What are the binomial factors that multiply to give each as a product?

$$x^{2}+5x+6$$

$$x^{2}+5x+6$$

$$x^{2}+3x+2$$

$$x^{2}+3x+2$$

$$x^{2}+3x+2$$

$$x^{2}+3x+2$$

$$x^{2}+3x+2$$

$$x^{2}+3x+2$$

$$x^{2}+3x+2$$

$$(x+1)(x+2)$$

$$(x+1)(x+2)$$

$$x^{2}+5x+6 = (x+2)(x+3)$$

······································				
Trinomial	Binomial Factor	Binomial Factor		
$x^2 + 5x + 6$	<i>x</i> +3	<i>x</i> +2		
$x^{2} + 8x + 12$	<i>x</i> +2	<i>x</i> +6		
$x^2 + 3xy - 18y^2$	x + 6y	x-3y		
$x^2 + 4x + 6$	Cannot be factored			

We can also factor without the use of manipulatives. When trinomials are of the form $x^2 + bx + c$, a pattern forms between the *b* term and the *c* term.

What patterns do you notice in the table above?

the constant term is the product "X" term is the sum

We can factor by listing the factors of the c term and then choosing the two which ADD to give the b term.

Factor: $x^{2}+11x+24$ Factors of 24: -8x-3 -6x-4 -24x-1 -12x-2 8x3 -6x4 -24x-1 -12x-212x-2

Two factors that add/subtract to +11:

$$(x+8)(x+3) = x^{2}+11x+24$$

<u>8</u> and <u>3</u>

 $\chi^{2} - 10x + 24 = (x-6)(x-4)$

$x^2 + 12x + 20$	$n^2 + 5n + 6$	$n^2 - 5n - 24$	$p^2 + p - 90$
(X + 10)(X+2)	(n+3)(n+2)	(n-8)(n+3)	(p+10)(p-9)
	$n^{2}-5n+6$	$x^{2}+6xy+5y^{2}$	$x^{4} + 7x^{2} + 12$
	(n-3)(n-2)	(x+y)(x+5y)	$(x^{2}+3)(x^{2}+4)$

REMEMBER! Always look for a <u>GCF</u> first!

$$4x^{2}+12x+8 = 4(x^{2}+3x+2) + (x+2)(x+1)$$

$2x^2 + 8x + 6$	$-4x^2 - 4x + 48$	$x^4 + 8x^3 + 12x^2$		
GCF:	GCF:	GCF:		
$2(x^{2}+4x+3)$	$-4(x^{2}+x-12)$	$\chi^{2}(\chi^{2}+8\chi+12)$		
2(x+3)(x+1)	-4(x+4)(x-3)	$\chi^{2}(x+6)(x+2)$		
5.3 extra practice #1-4				

P234 # 1,4,5,82 9,10,13,16