5.3a Factoring Trinomials of the form $x^{2}+b x+c$

What Trinomial is represented by these algebra tiles?

$$
\begin{gathered}
(x+4)(x+2)=x^{2}+6 x+8 \\
(x+3)(x+5)=x^{2}+8 x+15 \\
3+5 \quad 3 \times 5
\end{gathered}
$$

Tiles placed along the top side and left side, represent the factors: \qquad $x+2$ and \qquad $x+4$.

We can check our conclusion by multiplying the two binomials.

$$
(x+2)(x+4)=x^{2}+4 x+2 x+8
$$

Thus, the trinomial \qquad $x^{2}+6 x+8$ is a product of \qquad $x+2$ and \qquad $x+4$.

Model the trinomials $x^{2}+5 x+6$ and $x^{2}+3 x+2$ with algebra tiles. What are the binomial factors that multiply to give each as a product?
$x^{2}+5 x+6$

$$
x^{2}+3 x+2
$$

$$
x^{2}+5 x+6=(x+2)(x+3)
$$

We can also factor without the use of manipulatives. When trinomial are of the form $x^{2}+b x+c$, a pattern forms between the b term and the c term.

Trinomial	Binomial Factor	Binomial Factor
$x^{2}+5 x+6$	$x+3$	$x+2$
$x^{2}+8 x+12$	$x+2$	$x+6$
$x^{2}+3 x y-18 y^{2}$	$x+6 y$	$x-3 y$
$x^{2}+4 x+6$	Cannot be factored	

What patterns do you notice in the table above?
the constant term is the product
" x "term is the sum
We can factor by listing the factors of the c term and then choosing the two which ADD to give the b term.

Factor: $\quad x^{2}+11 x+24$ Factors of 24:

$$
\begin{array}{cccc}
-8 x-3 & -6 x-4 & -24 \times-1 & -12 x-2 \\
8 \times 3 & 6 \times 4 & 24 \times 1 & 12 \times 2 \\
\hline
\end{array}
$$

Two factors that add/ subtract to +11 : \qquad 8 and \qquad 3

$$
(x+8)(x+3)=x^{2}+11 x+24
$$

$$
x^{2}-10 x+24=(x-6)(x-4)
$$

$x^{2}+12 x+20$ $(x+10)(x+2)$	$n^{2}+5 n+6$ $(n+3)(n+2)$	$n^{2}-5 n-24$ $(n-8)(n+3)$	$p^{2}+p-90$ $(p+10)(p-9)$
	$n^{2}-5 n+6$ $(n-3)(n-2)$	$x^{2}+6 x y+5 y^{2}$ $(x+y)(x+5 y)$	$x^{4}+7 x^{2}+12$ $\left(x^{2}+3\right)\left(x^{2}+4\right)$

REMEMBER! Always look for a GCF first!

$$
\begin{aligned}
4 x^{2}+12 x+8= & 4\left(x^{2}+3 x+2\right) \\
& 4(x+2)(x+1)
\end{aligned}
$$

$2 x^{2}+8 x+6$	$-4 x^{2}-4 x+48$	$x^{4}+8 x^{3}+12 x^{2}$
GCF:	GCF:	GCF:
$2\left(x^{2}+4 x+3\right)$	$-4\left(x^{2}+x-12\right)$	$x^{2}\left(x^{2}+8 x+12\right)$
$2(x+3)(x+1)$	$-4(x+4)(x-3)$	$x^{2}(x+6)(x+2)$

5.3 extra practice \#1-4

$$
p 234 \# 1,4,5,8 a \quad 9,10,13,16
$$

