\qquad
9.2 Notes: Patterns in a Table of Values

Alvin is cooking a turkey in a very old oven, and needs to heat the turkey to an internal temperature of 250 degrees. For absolutely no reason at all, he decides to make a table of values comparing how long it takes to reach different temperatures:
X represents the amount of time in hours
Y represents the temperature in degrees

X	y
0	0
1	50
2	100
3	150
4	200

Does this represent a linear relationship?

What is the relationship between X and Y ?
The relationship can be represented in 3 ways:

1. words: everytime the hours increase by the temperature increases by 50
2. math : "f the first number is " x " the expression temperature is 50 times " x "

$$
y=50 \cdot x
$$

3. an ordered pair

$$
(2,100),(1,50),(3,150)
$$

$(x, 50 \cdot x)$ whatever the first number is, ($4,4 \times 50$) the second number.

A variable is: a letter that takes the place of a number that you don't know yet.

- dots connect to make a line
- graph: right 1 and up 1
- numbers : hours increase +1 temp increase +50

How can you tell whether a table makes
a linear relationship

Relationship A

x	2	4	6	8
y	31	35	经 9	沟 13
14				

Relationship B

does make a line * does not have to go through $(0,0)$

Is there a way to tell if a table represents a linear relationship WITHOUT graphing? Yes

Think about how you can describe the relationship in words:
what is the pattern for first number AND
What is the pattern for the second number.
You can tell if a table represents a linear relationship by:
seeing if both numbers keep following the same pattern.

Problem:
Wendy is buying shirts. The company charges $\$ 60$ for the first shirt, and $\$ 15$ for each extra shirt. Complete the table:

\# of shirts	1	2	3	4
Cost	60	75	$\underbrace{90}_{+15} \underbrace{90}_{+15}$	105

Is this a linear relationship? How do you know? ${ }^{+15}$
every time you have +1 shirts the cost is +15 .
How much should 12 shirts cost?

* could keep extending table | 5 | 6 | 7 | \cdots |
| ---: | ---: | ---: | :--- |
| 120 | 135 | 150 | |

1 shirt $=60$, need 11 more shirts

$$
=11 \times 15+60
$$

$$
p 348 \# 4,6,8,10
$$

$$
=\$ 225
$$

Does this represent a linear relationship?

be careful, sometimes a number \Rightarrow look at the rates is just missing from table

$$
\frac{+4}{+1} \quad \frac{+8}{+2} \quad \frac{+4}{+1}
$$

What happens if you try to plot it on a graph?

There is a consistent pattern, but ...

