Derivative of the Inverse of a Function

What is the relationship between the derivative of a function and the derivative of its inverse?

the slopes of the tangents of these points are reciprocals.

$$g'(b) = \frac{1}{f'(a)}$$

Example 1. Let
$$f(x) = x^3$$
. Determine $\frac{df^{-1}}{dx}\Big|_{x=8}$

$$=\frac{1}{f'(2)}$$

$$\frac{1}{3x^2}\Big|_{\chi=2}$$

Example 2. Let $f(x) = x^3 + x - 2$ and let g(x) be the inverse function. Evaluate g'(0)

g(x) has (0, _)

$$0 = x^3 + x - 2$$

nas 1-,-,
solve for x $0 = x^3 + x - 2$ graphically x = 1

$$g(0) = \frac{1}{f'(\infty)} \Big|_{\infty = 1}$$

$$= \frac{1}{3x^2 + 1} \Big|_{x=1}$$

The Inverse Trigonometric Functions

$$x = \sin y$$

Note that the inverse of $y = \sin x$ is not a function. (ie it is not one-to-one; it does not pass the horizontal line test) To make $y = \sin^{-1} x$ (or $y = \arcsin x$) into a function, we restrict the domain of the original function so that it will pass the horizontal line test. In the case of $y = \sin x$, we can restrict the domain to

It is helpful to think of $\sin^{-1}(x)$ as the angle whose sine is between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$

Thus
$$\sin^{-1}(\frac{1}{2}) = 30^{\circ}$$
 or $\frac{\pi}{6}$

$$\arcsin\left(-\frac{1}{2}\right)$$
 = -30° or $-\frac{\pi}{6}$

The other inverse trigonometric functions are restricted using the same principle of insuring that the restricted domain produces a one-to-one function.

 $\cos^{-1}(x)$ is the angle whose _

 $Cos\Theta = \kappa$ where ___

 $\tan^{-1}(x)$ is the angle whose ______ where __

 $\csc^{-1}(x)$ is the angle whose _____ CSC Θ = X where ____

 $\sec^{-1}(x)$ is the angle whose $\underline{\sec(0)} = \times$ where $\underline{0} < \theta < \pi$

 $\cot^{-1}(x)$ is the angle whose $\underline{\cosh(x)} = x$ where _____

Graphing Calculator Identities

$$csc''(x) = sin''(x)$$
 $sec''(x) = cos''(x)$
 $csc''(x) =$

 $\left(\frac{1}{2},-\right)$ is on $\cos^{-1}(x)$

find
$$\frac{d(\cos^{-1}(\frac{1}{2}))}{dx}$$
 $(\frac{1}{2}, -)$ is on $\cos^{-1}(x)$

$$= \frac{1}{d(\cos x)} \Big|_{x=\frac{\pi}{3}} = \frac{1}{-\sin(x)} \Big|_{x=\frac{\pi}{3}} = -\frac{2}{\sqrt{3}}$$