Derivative of the Inverse of a Function

What is the relationship between the derivative of a function and the derivative of its inverse?

$$
\begin{aligned}
g(x)=f^{-1}(x) & \\
f(x) & g(x) \\
(a, b) & (b, a)
\end{aligned}
$$

the slopes of the tangents at these points are reciprocals.

$$
g^{\prime}(b)=\frac{1}{f^{\prime}(a)}
$$

Example 1. Let $f(x)=x^{3}$. Determine $\left.\frac{d f^{-1}}{d x}\right|_{x=8}=\frac{1}{f^{\prime}(2)}$
$f(x)=x^{3}$

$$
\begin{aligned}
& =\left.\frac{1}{3 x^{2}}\right|_{x=2} \\
& =\frac{1}{12}
\end{aligned}
$$

Example 2. Let $f(x)=x^{3}+x-2$ and let $g(x)$ be the inverse function. Evaluate $g^{\prime}(0)$ $g(x)$ has $(0,-)$

$$
g^{\prime}(0)=\left.\frac{1}{f^{\prime}(x)}\right|_{x=1}
$$

$f(x)$ has $(-, 0)$
solve for $x \quad 0=x^{3}+x-2$

$$
=\left.\frac{1}{3 x^{2}+1}\right|_{x=1}
$$

$$
x=1
$$

$$
=\frac{1}{4}
$$

The Inverse Trigonometric Functions

$$
y=\sin x
$$

$x=\sin y$

Note that the inverse of $y=\sin x$ is not a function. (ie it is not one-to-one; it does not pass the horizontal line test) To make $y=\sin ^{-1} x$ (or $y=\arcsin x$) into a function, we restrict the domain of the original function so that it will pass the horizontal line test. In the case of $y=\sin x$, we can restrict the domain to
\qquad

$$
y=f(x)
$$

It is helpful to think of $\sin ^{-1}(x)$ as the angle whose sine is between $\frac{-\pi}{2}$ and $\frac{\pi}{2}$
Thus $\sin ^{-1}\left(\frac{1}{2}\right)=30^{\circ}$ or $\frac{\pi}{6}$

$$
\arcsin \left(-\frac{1}{2}\right)=-30^{\circ} \text { or }-\frac{\pi}{6}
$$

The other inverse trigonometric functions are restricted using the same principle of insuring that the restricted domain produces a one-to-one function.

$\cos ^{-1}(x)$ is the angle whose \qquad $\cos \theta=x$ where \qquad $0 \leq \theta \leq \pi$

$\tan ^{-1}(x)$ is the angle whose \qquad $\tan \theta=x$ where \qquad

$\csc ^{-1}(x)$ is the angle whose \qquad $\csc \theta=x$ where \qquad $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$

$\sec ^{-1}(x)$ is the angle whose $\sec (\theta)=x$ where \qquad

$\cot ^{-1}(x)$ is the angle whose $\cot (\theta)=x \quad$ where \qquad

Graphing Calculator Identities

$$
\begin{aligned}
& \csc ^{-1}(x)=\sin ^{-1}\left(\frac{1}{x}\right) \\
& \sec ^{-1}(x)=\cos ^{-1}\left(\frac{1}{x}\right)
\end{aligned}
$$

$$
\text { eg } \csc ^{-1}(5)
$$

find $d\left(\cos ^{-1}\left(\frac{1}{2}\right)\right) \quad\left(\frac{1}{2},-\right)$ is on $\cos ^{-1}(x)$
$\left(\frac{\pi}{3}, \frac{1}{2}\right)$ is on $\cos (x)$

$$
=\left.\frac{1}{\frac{d(\cos x)}{d x}}\right|_{x=\frac{\pi}{3}}=\left.\frac{1}{-\sin (x)}\right|_{x=\frac{\pi}{3}}=\frac{1}{-\frac{\sqrt{3}}{2}}=-\frac{2}{\sqrt{3}}
$$

