Chapter 9 Linear Relations			
$9.1 \quad$ Analysing Graphs if Linear Relations p.337 \#5,6,8,9,11, 12, 15, 16, $\star_{17},{ }^{2} 18$			

9.2	Patterns in a Table of Values

9.3 Linear Relationships	p.357 \#6, 7, 9, 11, 12, 14, 15, 17, 19, *20

9.4 Chapter Review	p.360 \#1-6,7,9,11, 12, 13, 14, 15

Unit Test

Vocabulary

\qquad
9.1 Notes: Analysing Graphs of Linear Relations

* Linear Relation follows 2 patterns (x and y), graph makes a line Betty is babysitting for the Jones. They are going to pay her $\$ 5$ per hour, plus a bonus of $\$ 8$ because the Jones children are very young and need extra care. She decides to make a table to see how much she will earn.

x	y
Hours worked	Money earned
0	8
1	13
$(18$	18
3	23
4	28
5	33

A table of values is: a way to organize pairs of numbers from a relationship.
It may not show all the data
Note: This table could also be drawn as a horizontal table
Convert this to a horizontal table in the space below:

x	hours	0	1	2	3	4	5
y	$\$$	8	13	18	23	28	33

Another way to represent a table of values is to draw a graph.

Why is a line graph more appropriate than a bar graph or a pictograph? we are comparing pairs of numbers, not amounts in categories.
What do you notice about the pattern made by the dots on the graph?

- they make a line.
- right 1 unit, up 5 units.

Often the pattern made by the dots on a graph can be used to make predictions. how much for 3.5 hours? approx $\$ 25.50$ when do you earn $\$ 10$? approx 2.5 hours

The following graph shows how much it costs to buy blank DVD's.
Cost vs \# of DVD's

What pattern do you notice?
DVD's: $+1 \quad$ Relationship makes a line.
cost : $+3 \quad \forall y=3 \cdot x$
Make a table of values for this graph:

x	\# DVD's $^{\prime}$	1	2	3	4	5
y	cost	3	6	9	12	15

If the relationship continues, what might be the cost for 12 DVD's?

$$
y=3 \cdot x
$$

when $x=12$

$$
y=3.12=36
$$

Could you make a prediction for how much 20.5 DVD's might cost?
you could, but it males no sense to because who wants $\frac{1}{2}$ of a DVD.
Fred is running a steady pace for an 800 m sprint, and his friend Harry is charting his progress:

distance ${ }^{600} \cdot(50,500)^{\text {Make a prediction for when he will finish. }}$ $y=10 \cdot x$ he will run 800 m in 80 seconds.
Make a prediction for where he will be at 35 seconds.
at 35 seconds, he will beat 350 m . Unlike the DVD example, it makes sense to have somedata time between the coordinates.

Use the table to plot the graph and find 2 more numbers that might fit the table:

x	4	6	8
y	4	7	10

right 2, up 3

For what value of a would $(14, a)$ be a coorindate on the graph?
"what would the y value be if $x=14$?" $(14,19)$ is on the graph so

$$
a=19
$$

