Applications

1. A bacteria culture has a population, n, after t hours given by $n=400+280 t+49 t^{2}$
a) Find $\frac{d n}{d t}$ and interpret the result. - how quickly is the number/amount changing

$$
\frac{d n}{d t}=98 t+280
$$

b) Find the rate of growth after 3 hours.

$$
98(3)+280=574 \frac{\text { bacteria }}{\text { hour }}
$$

2. In manufacturing, the cost of production $c(x)$ is a function of x, the number of units produced. The marginal cost of production is the rate of change of cost with respect to the level of production and can thus be denoted as $\frac{d c}{d x}$. This is sometimes loosely defined to be the extra cost of producing 1 more unit, and is acceptable if the slope of c is not quickly changing near x.

The cost in dollars of producing x DVD drives is $c(x)=(50-.1 x)(40+x)$.
a) What is the average cost of producing 100 DVD drives ?

$$
\begin{aligned}
& C(100)=\text { cost of } 100 \text { drives } \\
& \text { average cost }=\frac{C(100)}{100}=\frac{(50-10)(40+100)}{100}=\$ 56 / \text { drive }
\end{aligned}
$$

b) What is the marginal cost of producing the $100^{\text {th }}$ DVD drive?

$$
\begin{aligned}
C(x)= & (50-.1 x)(40+x) \\
C^{\prime}(x) & =(-.1)(40+x)+(50-.1 x)(1)=46-0.2 x \\
& =-4-.1 x+50-.1 x
\end{aligned}
$$

c) What is the cost of producing the $100^{\text {th }} \mathrm{DVD}$ drive ?

$$
\begin{aligned}
& \quad \text { marginal cost }=c^{\prime}(100)=46-0.2(100) \\
&=\$ 26 \\
& c(100)-c(99) \\
&=5600-5573.9 \\
&=\$ 26.10
\end{aligned}
$$

3. A car burns gas at a rate of $g(x)=\left(\frac{1000+x^{2}}{200 x}\right)$ liters per kilometer when traveling at $x \mathrm{~km} / \mathrm{h}$

how does L/km change as
b) What is $g^{\prime}(x)$ and how do you interpret it?

$$
\frac{(2 x)(200 x)-\left(1000+x^{2}\right)(200)}{(200 x)^{2}}
$$ speed increases

$$
=\frac{400 x^{2}-200000-200 x^{2}}{(200 x)^{2}}
$$

c) Determine i) $g^{\prime}(60)$
ii) $\quad g^{\prime}(80)$

$$
=\frac{200 x^{2}-200000}{40000 x^{2}}
$$

iii) $g^{\prime}(110)$

$$
\begin{aligned}
g^{\prime}(60) & =\frac{60^{2}-1000}{200(60)^{2}} \\
& =0.0036111 \mathrm{~L} / \mathrm{km}
\end{aligned}
$$

$$
g^{\prime}(80)=.0042 \frac{1}{\mathrm{~L} / \mathrm{km}} \mathrm{~km} / \mathrm{h}
$$

$$
\mathrm{km} / \mathrm{h}
$$

$$
g^{\prime}(110)=.0046 \frac{\mathrm{~L} / \mathrm{km}}{\mathrm{~km} / \mathrm{h}}
$$

d) What is the most efficient speed for fuel consumption?
\rightarrow fuel consumption is a minimum at the lowest point on graph when rate has a sigh change.

$$
\begin{aligned}
& x^{2}-1000=0 \\
& x^{2}=1000 \\
& x= \pm \sqrt{1000}= \pm 31.6 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

$31.6 \mathrm{~km} / \mathrm{h}$

