Velocity, Speed and Acceleration

1. The graph shows the position $s(t)$ of a particle moving along a horizontal coordinate axis.
a) When is the particle moving to the left?

$$
[2,4] \frac{d s}{\frac{d s}{4}=} \text { negative }
$$

b) When is the particle moving to the right?

$$
[4,6] \quad \frac{d s}{d t}=\text { positive. }
$$

c) When is the particle standing still?

$$
[0,2] \text { and }[6,7] \frac{d s}{d t}=0
$$

d) Graph the particle's velocity and speed.
e) When is the particle moving fastest?

Position (in.)

2. A particle moves along a vertical coordinate axis so that its position at any time $t \geq 0$ is given by the function $s(t)=\frac{1}{3} t^{3}-3 t^{2}+8 t-4$ where s is measured in centimetres and t is measured in seconds.
a) Find the displacement during the first 6 seconds. $S(6)-S(0)$

$$
\begin{aligned}
& =8-(-4) \\
& =12
\end{aligned}
$$

b) Find the average velocity during the first 6 seconds.

$$
\frac{8-(-4)}{6-0}=2 \mathrm{~cm} / \mathrm{s}
$$

d) For what values of t is the particle moving
c) Find expressions for the velocity and acceleration.

$$
\begin{aligned}
& v(t)=t^{2}-6 t+8 \\
& a(t)=2 t-6
\end{aligned}
$$

downward?
when is $v(t)<0$

$$
\begin{aligned}
v(t) & =t^{2}-6 t+8=0 \\
& =(t-2)(t-4)=0
\end{aligned}
$$

$$
t=2 \text { or } 4
$$

3. The graph shows the velocity $v=f(t)$ of a particle moving along a horizontal coordinate axis.
a) When does the particle reverse direction? at 1 s and 4.2 s
b) When is the particle moving at a constant speed?
c) When is the particle moving at its greatest speed? at $3 s$, speed $=|-3|$ $=3$
d) Graph the particle's acceleration. (where defined)

$$
\text { from } \begin{aligned}
& 0-2 s \\
& \frac{\Delta v}{\Delta t}=\frac{-2-2}{2} \\
&=-2
\end{aligned}
$$

Velocity (m/sec.)

Acceleration (m /sec ${ }^{2}$)

4. The values of the coordinates s of a moving body for various values of t are given below.

$t(\mathrm{sec})$	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
$s(\mathrm{~m})$	40.0	35.0	30.2	36.0	48.2	45.0	38.2	16.0	0.2

a) Plot s versus t, and sketch a smooth curve through the given points.

$$
y=-4 x^{3}+18.5 x^{2}-19 x+39
$$

b) Estimate the velocity at $t=0.5 \mathrm{sec}$ and at $t=2.5 \mathrm{sec}$.
at 0.5 s

$$
\text { at } 2.5 \mathrm{~s} \begin{aligned}
& \frac{40-60}{3-2} \\
& =-20 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

c) At what approximate value of t does the particle change direction?
at 1 s and at 2.3 s the derivative of
position changes sign
d) At what approximate value of t is the particle moving at the greatest speed? at approximately ts $|v|$ has greatest $\begin{gathered}\text { value. }\end{gathered}$

