2.6 Warmup

1. Determine $\frac{d}{d x}\left(\frac{f g}{h}\right)$
2. Determine $\frac{d}{d x} f^{3}$ (Hint: Treat f^{3} as $f \bullet f \bullet f$ and use the product rule)
3. Determine $\frac{d}{d t}\left(\frac{A t-1}{A^{2} t}\right)$ where A is a constant.
4. If $y=x^{n}$ what is $y^{(n)}$ or $\frac{d^{n} y}{d x^{n}}$ (or what is the $n^{\text {th }}$ derivative)?
5. If you keep on differentiating a polynomial function, will the derivative eventually become zero? Why or why not?

Velocity and Acceleration
For any function $s=f(t)$ where $s=$ distance (or position or displacement) and $t=$ time, $\frac{\Delta s}{\Delta t}$ is the average velocity, s^{\prime} is the instantaneous velocity $v(t)$, and $s^{\prime \prime}$ is the instantaneous acceleration. Note that the average aceleration is $\frac{\Delta v}{\Delta t}$ and that $s^{\prime \prime}(t)=\frac{d^{2} s}{d t^{2}}=v^{\prime}(t)=\frac{d v}{d t}=a(t)$. Also speed is defined to be $|v(t)|$

Part One: Straight Line Motion
Example: A particle moves along a horizontal line according to $s=t^{3}-t^{2}-t+1$ where s is the distance in centimeters and t is the time in seconds. Assume $t \geq 0$.
a) Sketch the graph of $s=f(t)$

t	s
0	1
1	0
2	3
3	16

b) Find the average velocity during the first 3 seconds.

$$
\begin{aligned}
\text { secant } & =\frac{s(3)-s(0)}{3-0} \\
& =\frac{16-1}{3}
\end{aligned}
$$

c) Find the instantaneous velocity at time t and sketch the graph of the velocity function.

$$
\begin{aligned}
v(t) & =s^{\prime}(t) \\
v(t)=s^{\prime}(t) & =3 t^{2}-2 t-1
\end{aligned}
$$

$1^{\text {st }}$ derivative.

$$
\begin{array}{l|l}
t & s^{\prime}(t) \\
0 & -1 \\
1 & 0 \\
2 & 7
\end{array}
$$

average $\bar{v}=5 \mathrm{~m} / \mathrm{s}$

d) Find the velocity at $t=2 \mathrm{~s}$

$$
\begin{aligned}
v(t) & =s^{\prime}(2)=3(2)^{2}-2(2)-1 \\
& =s^{\prime}(2)=7
\end{aligned}
$$

e) When is the velocity zero?

$$
\begin{aligned}
0 & =3 t^{2}-2 t-1 \\
& =3 t^{2}-3 t+t-1 \\
& =3 t(t-1)+1(t-1)
\end{aligned}
$$

f) When is the particle moving to the left? when $v(t)$ is negative. $v(t)<0$ when $0 \leq t<1$

$$
\begin{aligned}
& 0=(3 t+1)(t-1) \\
& t=-\frac{1}{3} \text { or } t=1
\end{aligned}
$$

since $t \geq 0$

g) What is the acceleration at time t ? At $t=2 \mathrm{~s}$?

$$
\begin{aligned}
& a(t)=v^{\prime}(t)=s^{\prime \prime}(t) \\
& a(t)=6 t-2
\end{aligned}
$$

h) What is the acceleration when the velocity is a minimum?
when man of velocity graph $=0$
there will be a local maximum or minimum any time the derivative $=0$

$$
a=0
$$

Part Two: Projectile Motion
Example: A projectile is fired into the air from the top of a 20 m high hill. Its initial velocity is $50 \mathrm{~m} / \mathrm{s}$ and its height after t seconds is given by the function $h=-5 t^{2}+50 t+20$.
a) Sketch the graph of $h=f(t)$

t	h
0	20
1	65
2	100
3	125
4	140
5	145

b)

Find the velocity at time t.
At $t=2 \mathrm{~s}$.

$$
v(t)=h^{\prime}(t)=-10 t+50
$$

$$
v(2)=-10(2)+50
$$

$$
V(2)=30
$$

c) How long will it take to reach its maximum height?
when does $h^{\prime}(t)=0$

$$
\begin{aligned}
-10 t+50 & =0 \\
10 t & =50 \\
t & =5 \mathrm{~s}
\end{aligned}
$$

d) What is the maximum height reached?

$$
\begin{aligned}
h(5) & =-5(5)^{2}+50(5)+20 \\
& =145 \mathrm{~m}
\end{aligned}
$$

e) What is the acceleration at time t ?

$$
\begin{array}{r}
a(t)=h^{\prime \prime}(t) \quad \text { or } \quad a(t)=v^{\prime}(t) \\
v(t)=-10 t+50 \\
a(t)=v^{\prime}(t)=-10
\end{array}
$$

f) What is the projectile's velocity when it hits the ground?
$h(t)=0 \quad$ when it hits the ground.
need to find t when $h=0$

$$
\begin{aligned}
0 & =-5 t^{2}+50 t+20 \\
0 & =-5\left(t^{2}-10 t-4\right) \\
t & =\frac{-(-10) \pm \sqrt{(-10)^{2}-4(1)(-4)}}{2(1)} \\
& =\frac{10 \pm \sqrt{116}}{2} \\
t & =10.4 \text { or }-4.4
\end{aligned}
$$

$$
\begin{aligned}
v(t) & =-10 t+50 \\
v(10.4) & =-10(10.4)+50 \\
& =-54
\end{aligned}
$$

