2.2 Warmup

Determine the following:

1. $\frac{d}{d x} 5$

$$
\begin{aligned}
& f(x)=5 \\
& =\frac{5-5}{h}=\frac{0}{h}
\end{aligned}
$$

$$
\frac{d(5)}{d x}=\frac{f(x+h)-f(x)}{h} \quad \frac{d 5}{d x}=0
$$

2. $\frac{d}{d x} 3 x+7=3$

$$
\frac{f(x+h)-f(x)}{h}=\frac{[3(x+h)+7]-[3 x+7]}{h}
$$

3. $\frac{d}{d x} x^{2}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$

$$
=\frac{3 h}{h}=3
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow a} \frac{x^{2}-a^{2}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{(x+a)(x-a)}{x-a} \quad \frac{d}{d x} x^{2}=2 a
\end{aligned}
$$

4. $\frac{d}{d x} x^{3}=\lim _{x \rightarrow a} \frac{\left(x^{3}\right)-\left(a^{3}\right)}{x-a}$

$$
\begin{aligned}
& =\lim _{x \rightarrow a} \frac{(x-a)\left(x^{2}+a x+a^{2}\right)}{x-a} \\
& =\lim _{x \rightarrow a}\left(x^{2}+a x+a^{2}\right) \\
& =a^{2}+a^{2}+a^{2}
\end{aligned} \quad \frac{d}{d x}\left(x^{3}\right)=3 a^{2}
$$

5. $\frac{d}{d x} x^{4}=\lim _{x \rightarrow a} \frac{x^{4}-a^{4}}{x-a}$

$$
\begin{aligned}
& =\lim _{x \rightarrow a} \frac{\left(x^{2}+a^{2}\right)\left(x^{2}-a^{2}\right)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\left(x^{2}+a^{2}\right)(x+a)(x-a)}{x-a} \\
& =\left(a^{2}+a^{2}\right)(a+a)=2 a^{2} \cdot 2 a \\
& =4 a^{3}
\end{aligned}
$$

Relationships Between the Graphs of $y=f(x)$ and $y=f^{\prime}(x)$

Graphing f^{\prime} from f-How does the graph of the derivative compare with the graph of the original? Or what does the original function tell you about its derivative?

$$
y=f(x)
$$

* $f(x)$ can be used to graph $f^{\prime}(x)$

Graphing f from f^{\prime} - How does the graph of the function compare with the graph of the derivative? Or what does the derivative tell you about the original function?

$$
y=f^{\prime}(x)
$$

slope of $f(x)=2$

there aremany functions that have a slope of 2 .

$$
f(x)=2 x+c
$$

there are many possible y-intercepts.
Sketch the graph of $y=f(x)$ with $f(-2)=3$ and with the graph of $y=f^{\prime}(x)$ shown below. Assume f is continuous. We can graph $y=f(x)$ move accurately

$$
y=f^{\prime}(x)
$$

Graphing the derivative from data Stat> ed rt
Probabilities of Shared Birthdays Estimates of Slopes of the Probability Curve

plo l \# 7-10
\# 13
\#16-19, 21

