2.1 Warmup

Find the instantaneous rate of change of the volume of a sphere with respect to the radius when the radius is $10 \mathrm{~cm} .\left(V=\frac{4}{3} \pi r^{3}\right)$. Alternately, how quickly is the volume changing when the radius is 10 cm. ?

$$
\begin{aligned}
& m_{\tan }=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
&=\lim _{h \rightarrow 0} \frac{\frac{4}{3} \pi(a+h)^{3}-\frac{4}{3} \pi(a)^{3}}{h} \\
&=\lim _{h \rightarrow 0} \frac{\frac{4}{3} \pi\left[(a+h)^{3}-a^{3}\right]}{h} \\
&=\lim _{h \rightarrow 0} \frac{\frac{4}{3} \pi\left(\not a^{3}+3 a^{2} h+3 a h^{2}+h^{3}-a^{3}\right)}{h} \\
&=\lim _{h \rightarrow 0} \frac{4}{3} \pi\left(3 a^{2}+3 a h+h^{2}\right) \\
&=4 \pi a^{2} \quad m \tan =4 \pi(10)^{2} \\
&=400 \pi
\end{aligned}
$$

$$
m_{\tan }=4 \pi a^{2}
$$

Definition of the Derivative
a derivative is afunction to determine instantaneous rate of

The derivative of the function $y=f(x)$ with respect to x is the function

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \text { or } \quad f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

$f(x)=$ function
$f^{\prime}(x)=$ tangent to the function
The derivative is a function that tells you

1. slope of curve at any point on the function
2. Slope of the tangent line
3. instantaneous rate of change.

The domain of f^{\prime} is not necessarily the same as the domain of f (alternately, the tangent does not have to exist at each point where the function is defined)

$$
\begin{aligned}
& f(x): D: x \in \mathbb{R} \\
& f^{\prime}(x): D: x \neq \pm 2
\end{aligned}
$$

$$
\begin{gathered}
D: x \neq 1 \\
x \neq 1
\end{gathered}
$$

$D: x \in \mathbb{R}$

$$
x \neq 0
$$

If $f^{\prime}(x)$ exists, we say that the function is differentiable at x. The process of finding the derivative of a function is called differentiation.

Example If $f(3)=8$ and $f^{\prime}(3)=4$, find the equation of the tangent to $y=f(x)$ at $x=3$.
10 needs point and slope.
$(3,8)$ slope $=4$ at $x=3$

$$
y-8=4(x-3)
$$

Notations for the derivative

Notation

y^{\prime}	y prime - nice and compact $f^{\prime}(x)$ $\frac{d y}{d x}$ f prime of x - emphasizes that the derivative is a function and is related to $f(x)$
$\frac{d f}{d x}$	
$\frac{d}{d x} f(x)$	dee y dee x - shows that you are differentiating y with respect to x dee dee x of $f(x)$ - shows that differentiation is an operation being performed on the function $f(x)$

Example: Find the derivative of $y=x^{2}-5 x$ or Find y^{\prime} if $y=x^{2}-5 x$ or Find

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2}-5 x\right) y^{\prime} & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}-5(x+h)\right]-\left[x^{2}-5 x\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[x^{2}+2 x h+h^{2}-5 x-5 h\right]-\left[x^{2}-5 x\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-5 h}{h} \\
y^{\prime} & =2 x-5
\end{aligned}
$$

$$
x+h=a
$$

Alternate Definition for the Derivative at a Point
instead of $h \rightarrow 0 \quad f(x+h)$

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

$$
x \rightarrow a \quad f(a)
$$

Example: Use the alternate definition to differentiate $y=3 \sqrt{x}$

$$
\begin{aligned}
y^{\prime}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} & =\lim _{x \rightarrow a} \frac{3 \sqrt{x}-3 \sqrt{a}}{x-a} \cdot \frac{3 \sqrt{x}+3 \sqrt{a}}{3 \sqrt{x}+3 \sqrt{a}} \\
& =\lim _{x \rightarrow a} \frac{9 x-9 a}{(x-a)(3 \sqrt{x}+3 \sqrt{a})} \\
& =\lim _{x \rightarrow a} \frac{9(x-a)}{(x-a)(3 \sqrt{x}+3 \sqrt{a})} \\
& =\frac{9}{3 \sqrt{a}+3 \sqrt{a}} \\
& =\frac{9}{6 \sqrt{a}} \text { or } \frac{3}{2 \sqrt{a}}
\end{aligned}
$$

What is the difference between $f^{\prime}(x)$ and $\frac{d f}{d x}$?
no difference

What is the difference between $f^{\prime}(x)$ and $f^{\prime}(a)$?

$$
\text { no difference } f^{\prime}(a) \text { what is } f^{\prime}(x) \text { at } x=a
$$

What is the difference between $f^{\prime}(5)$ and $f^{\prime}(x)$?

$$
\begin{aligned}
& f^{\prime}(x) \text { is the function to find } m_{\tan } \\
& f^{\prime}(5) \text { is man specifically at } x=5
\end{aligned}
$$

Note In order for the derivative of a function to exist at a point (or for the function to be differentiable at that point), one of the requirements that must be met is that the left and right hand derivatives (instantaneous slopes) must be equivalent

the tangents on the left and right are not the same.

1. Find y^{\prime} if $y=x^{3}-2 x^{2}+8 x$

$$
\begin{array}{ll}
y^{\prime}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} & \text { or } \\
=\lim _{x \rightarrow a} \frac{\left(x^{3}-2 x^{2}+8 x\right)-\left(a^{3}-2 a^{2}+8 a\right)}{x-a} & \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
\text { 2. Find } & \lim _{h \rightarrow 0} \frac{\left[(x+h)^{3}-2(x+h)^{2}+8(x+h)\right]-\left[x^{3}-2 x^{2}+8 x\right]}{h} \\
\lim _{x \rightarrow 2} \frac{\left(x^{3}-2 x^{2}+8 x\right)-(8-8+16)}{x-2} & \text { or } \lim _{h \rightarrow 0} \frac{\left((2+h)^{3}-2(2+h)^{2}+8(2+h)\right)-(8-8+6)}{h}
\end{array}
$$

3. Find $\frac{d y}{d x}$ if $y=x^{5}$

$$
\lim _{x \rightarrow a} \frac{x^{5}-a^{5}}{x-a}
$$

$$
\lim _{h \rightarrow 0} \frac{(x+h)^{5}-(x)^{5}}{h}
$$

4. Find $\left.\frac{d y}{d x}\right|_{x=3}$ if $y=x^{5}$
notation: find the
derivative when $x=3$

$$
\begin{aligned}
& \text { derivative when } x=3 \\
& y^{\prime}(3)=\lim _{x \rightarrow 3} \frac{x^{5}-3^{5}}{x-3} \quad \text { or } y^{\prime}(3)=\lim _{h \rightarrow 0} \frac{(3+h)^{5}-3^{5}}{h}
\end{aligned}
$$

