2.1 Warmup

Find the instantaneous rate of change of the volume of a sphere with respect to the radius when the

radius is 10 cm. (V = gn r®). Alternately, how quickly is the volume changing when the radius is 10
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Definition of the Derivative
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The derivative of the function y = f (x) with respect to x is the function
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The derivative is a tunction that tells you
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The domain of f' is not necessarily the same as the domain of f (altern
have to exist at each point where the function is defined)
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If f’(x) exists, we say that the function is differentiable at x. The proc
a function is called differentiation. . '
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Example If f(3)=8and f'(3)=4, find the equation of the tangent to y = f (x) atx = 3.
\ hY l 3 t Y

J { > v~eeds ?o\w}v\ cnd -SlO‘PQ.
(3,8)  Sopezit ok x=3

Y-B= 4 (%x-3)

Notations for the derivative

Notation Read as
y' y prime — nice and compact
f(x) f prime of x — emphasizes that the derivative is a function and is related to f (x)
g_y deey dee x — shows that you are differentiating y with respect to x

X
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ax dee f dee x — shows that you are differentiating the function f with respect to x
d f(x) dee dee x of f(x) - shows that differentiation is an operation being performed
dx .

on the function f (x)

Example: Find the derivative of y=x*-5x or Find y' if y=x*-5x or Find
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Alternate Definition for the Derivative at a Point i“s*ec"d’ O'F h >0 ‘F(X—H’\)

()i L)1) x=a ()

X—a X_a

Example: Use the alternate definition to differentiate y =3Jx
T - . -3la o
Y= lm £ Fcp.): o 3J% 3£ . 3fx +3]0

¥ ~a Yo X-a 3k +33

- hm q‘ﬁ"’ cia
2o (x-0)(3¥%+33a)
. hm 4 (30
X206 (p4) 38380
q
3{e + 3l
q

e 20

What is the difference between f’(x) and j—f?
X
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no diflecence

What is the difference between f’(x) and f'(a)?
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What is the difference between f'(5) and f'(x)?
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Note In order for the derivative of a function to exist at a point (or for the function to be differentiable
at that point), one of the requirements that must be met is that the left and right hand derivatives

(instantaneous slopes) must be equivalent
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Express the following as limits. Do not determine the limit.

1. Find y'if y=x>—2x*+8x
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3. Find dy if y=x°
dx
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