Warmup 1.12

1. Find the instantaneous rate of change of the volume of a sphere with respect to the radius. The formula for volume is $V=\frac{4 \pi r^{3}}{3}$.

$$
\begin{aligned}
m_{\tan } & =\lim _{h \rightarrow 0} \frac{\left(\frac{4 \pi}{3}(r+h)^{3}-\frac{4 \pi}{3}\left(r^{3}\right)\right)}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{4 \pi}{3}\right)\left(\frac{1}{h}\right)\left[(r+h)^{3}-r^{3}\right] \\
& =\lim _{h \rightarrow 0}\left(\frac{4 \pi}{3}\right)\left(\frac{1}{h}\right)\left(\left[r^{3}+3 r^{2} h+3 r h^{2}+h^{3}\right]-r^{3}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{4 \pi}{3}\right)\left(\frac{1}{h}\right)\left(3 r^{2} h+3 r h^{2}+h^{3}\right) \\
& =\frac{4 \pi}{3}\left(3 r^{2}\right) \quad \text { or } \quad \tan ^{2}=4 \pi r^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. Find all points on the curve } y=\frac{1}{x-5} \text { where the slope of the tangent is }-\frac{1}{4} . \\
& \qquad \begin{aligned}
m_{\tan }=\lim _{h \rightarrow 0} \frac{\frac{1}{a+h-5}-\frac{1}{a-5}}{h} & =\lim _{h \rightarrow 0}\left(\frac{1}{h}\right)\left(\frac{(a-5)-(a+h-5)}{(a+h-5)(a-5)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{-\not h}{(a+h-5)(a-5)}\right) \\
m \tan & =\frac{-1}{(a-5)^{2}}
\end{aligned}\left\{\begin{array}{l}
\frac{-1}{4}=\frac{-1}{(a-5)^{2}} \\
(a-5)^{2}=4 \\
a-5= \pm 2 \\
a= \pm 2+5 \\
a=7 \\
f(7)-1
\end{array}\right.
\end{aligned}
$$

